
Quantitative finance with R and cryptocurrencies

Dean Fantazzini

February 2020

How the book is structured?

Part I

I A brief review of Cryptocurrencies and Bitcoin

I Where to get (free) Bitcoin and cryptocurrency data?

I Liquidity measures

I Bounds for Bitcoin’s (and other cryptocurrencies’) value

I Price discovery in the Bitcoin market

Part II

I Univariate time series models

I Multivariate time series models

I Testing for financial bubbles and explosive price behavior

I Univariate volatility modelling

I Multivariate volatility modelling

Part III

I Market Risk Management

I Portfolio Management

I Credit Risk Management

I Conclusions: challenges ahead

Chapter 1: (Very brief) introduction to Bitcoin
and other Cripto-currencies

(Very brief) introduction to Bitcoin and other
Cripto-currencies

The Bitcoin network uses cryptography to validate transactions
during the payment processing and create transaction blocks. In
particular, Bitcoin relies on two cryptographic schemes:

1. digital signatures (to exchange the payment instructions
between the involved parties)

2. a cryptographic hash function: to maintain the discipline
when recording transactions to the public ledger (known as
blockchain)

(Very brief) introduction to Bitcoin and other
Cripto-currencies

Digital signatures are used to authenticate digital messages between a
sender and a recipient, and they provide:

(I) Authentication: the receiver can verify that the message came from
sender

(II) Non-repudiation: the sender cannot deny having sentthe message;

(III) Integrity : the message was not altered in transit.

The use of digital signatures includes public key cryptography, where a
pair of keys (open and private) are generated with certain desirable
properties.

A digital signature is used for signing messages: the transaction is signed
using a private key, and transferred to the Bitcoin network.

All the members of the network can verify that the transaction came
from the owner of the public key, by taking the message, the signature,
the public key and by running a test algorithm.

(Very brief) introduction to Bitcoin and other
Cripto-currencies

A cryptographic hash function takes as input a string of arbitrary length
(the message m), and returns the string with predetermined length (the
hash h).

The function is deterministic, which means that the same input m will
always give the same output h. In addition,the function must also have
the following properties:

(i) Pre-image resistance: for a given hash h, it is difficult to find a
message m such that hash(m)=h.

(ii) Collision resistance: for a given message m1 it is hard to find
another message m2, such that hash (m1) = hash(m2). In other
words, a change in the message leads to a change in the hash.

The output of the hash function looks like to be random, although it is
completely deterministic. The Bitcoin network mainly uses the secure
hash algorithm SHA-256

(Very brief) introduction to Bitcoin and other
Cripto-currencies

From a technical standpoint, bitcoins stay in the Bitcoin network on
bitcoin-addresses.

The ownership of a certain number of bitcoins is represented by the
ability to send payments via the Bitcoin network using the bitcoins
attached to these addresses.

In particular, every bitcoin address is indexed by a unique public ID,
which is an alphanumeric identifier, which corresponds to the public key.

The private key controls the bitcoins stored at that address. Any
payment (i.e. a message) which involved this address as the sending
address must be signed by the corresponding private key to be valid.

⇒ In straight terms,the possession of bitcoins at a specified bitcoin
address is given by the knowledge of the private key corresponding to
that address.

(Very brief) introduction to Bitcoin and other
Cripto-currencies

The agents who process transactions in the Bitcoin network use a
set of bitcoin addresses called the wallet, which is the set of bitcoin
addresses that belong to a single person/entity.

Each transaction record includes one or more sending addresses
(inputs) and one or more receiving addresses (outputs), as well as
the information about how much each of these addresses sent and
received:

(Very brief) introduction to Bitcoin and other
Cripto-currencies

After the initial check of the transaction signed messages,
validation nodes in the Bitcoin network begin to compete for the
opportunity to record a transaction in the blockchain.

1. Competing nodes start putting together transactions in a new
block, which were executed since the last record in the
blockchain.

2. The block is used to define a complex computing task based
on the hash function. The node that first solves this task
records the transactions on the blockchain and collects a
reward.

3. The implementation of this scheme is the so-called Hashcash -
a proof that the system is operating properly (proof-of-work),
and whose aim is to ensure that the computers use a certain
amount of computing power to perform a task (see Beck
(2002) for more details).

(Very brief) introduction to Bitcoin and other
Cripto-currencies

The nodes that perform the process of the proof-of-work in the
Bitcoin network are called miners.

These miners use their computing resources in this process with
the goal to obtain the reward offered by the Bitcoin Protocol.

Usually the reward is a predetermined number of newly created
bitcoins (currently 12.5 BTCs).

The rest of the reward (which is currently smaller), is a voluntary
transaction fee paid by those executing the transaction to the
miners for transaction processing.

The quantity of BTC issued after the validation of a new block is
predetermined and decreases geometrically over time, halving every
210,000 blocks (approximately every 4 years)

(Very brief) introduction to Bitcoin and other
Cripto-currencies

After an initial check of the transactions, the miners begin to
compete to record the new transactions in a new block of the
Blockchain. This new block is used as input for a cryptographic
hash function to obtain a hash called digest.

→ This digest, together with a one-time random code known as
nounce -which is an alphanumeric string-, and the hash of the
previous block are then used in another hash function to obtain the
hash for the new block. The miners have to find a nounce so that
the hash of the new Blockchain is numerically smaller than the
network’s difficulty target.

The first miner to solve this computational problem transfers this
information to the other nodes in the Bitcoin network, and the
Blockchain is updated.

(Very brief) introduction to Bitcoin and other
Cripto-currencies

Every 2016 blocks the difficulty target is adjusted to keep the
average time between new blocks at 10 minutes, thus
automatically adapting to the new total amount of mining power
on the network given by the hashrate and measured in hash/s.

The number of transactions which can be recorded in a single
block is limited by its size (1Mb or about 1500 transactions): given
an average time of 10 minutes to generate, a new block this
implies a theoretical limit of 7 transactions per second or about
600 thousand transactions per day.

Originally, the Bitcoin network had no block size limit, but this was
changed to avoid DOS (Denial Of Service) attacks in the form of
large blocks with fake transactions (a slow computer would never
catch up in the presence of massive blocks, and its owner would be
unable to spend his/her bitcoins).

(Very brief) introduction to Bitcoin and other
Cripto-currencies

There is a hot debate in the bitcoin community on how to increase
the block size. This first agreed solution was the Segregated
Witness (SegWit) update, which is a system by which the
signature data is separated from other transaction data so that the
block size can increase up to 2 MB.

All bitcoin mining pools signaled support for SegWit by 8 August
2017, while SegWit was finally implemented in the network on 21
August 2017.

The SegWit update is an example of a soft fork, that is a change
of rules which is also recognized by the older software. This is
different from a hard fork, where the new rules allow to create
blocks which are not considered valid by older software.

Finally, visit https://blockchain.info/charts for a quick presentation
of the main data related to the Bitcoin blockchain.

https://blockchain.info/charts

Other Cryptocurrencies
The textbook also provides a very brief recap of some of the most
interesting alternative cryptocurrencies.

A good starting point for a wider analysis is
https://en.wikipedia.org/wiki/List_of_cryptocurrencies, while if
the reader wants to see the whole list of available cryptocurrencies,
https://coinmarketcap.com and https://coinlib.io/ are the best
available sources.

These provides various data, such as price, coin supply, trade
volume, or market capitalization (= price × total supply). Prices
are computed by averaging the prices at the major exchanges
weighted by volume and are updated every 5 minutes (or less).

News aggregators about cryptocurrencies are coindesk.com,
cointelegraph.com and cryptopanic.com, while for a full list see
www.quora.com/What-are-the-best-news-sources-for-
cryptocurrency-traders-and-investors

https://en.wikipedia.org/wiki/List_of_cryptocurrencies
https://coinmarketcap.com
https://coinlib.io/

Chapter 2: Where to get (free) Bitcoin and
cryptocurrency data?

Where to get (free) Bitcoin and cryptocurrency data?
There are several cryptocurrency exchanges available nowadays to
trade cryptocurrencies for fiat currencies or other cryptocurrencies.

Many of them allow the free download of market data, and there
are also many data aggregators which distribute free price data
from several exchanges.

An example: Bitcoinity
The website data.bitcoinity.org is likely the best place to begin
looking at bitcoin market data. It has a well-made and
user-friendly interface, and market data can be immediately
downloaded as CSV or xlsx files.

For example, if we want to download the latest 30 days of hourly
prices for the BTC/EUR pair traded at the Bitstamp exchange
with volumes expressed in BTC, we can use the following
(alternative) R commands:

Where to get (free) Bitcoin and cryptocurrency data?

I Method 1:

url = paste0("http://data.bitcoinity.org/export_data.csv?",
"currency=EUR&data_type=price_volume&exchange=bitstamp&r=hour",
"&t=lb×pan=30d")

x = read.csv(file=url)
head(x)

Time price volume
1 2019-05-04 23:00:00 UTC 5161.323 367697.63
2 2019-05-05 00:00:00 UTC 5109.705 320224.17
3 2019-05-05 01:00:00 UTC 5120.957 14430.50
4 2019-05-05 02:00:00 UTC 5130.345 113584.80
5 2019-05-05 03:00:00 UTC 5128.678 19751.94
6 2019-05-05 04:00:00 UTC 5112.641 45443.53

Where to get (free) Bitcoin and cryptocurrency data?

I Method 2:

URL <- paste0("http://data.bitcoinity.org/export_data.csv?",
"currency=EUR&data_type=price_volume&exchange=bitstamp&r=hour",

"&t=lb×pan=30d")
download.file(URL, destfile = "data.csv")
x = read.csv(file="data.csv")
head(x)

Time price volume
1 2019-05-04 23:00:00 UTC 5161.323 367697.63
2 2019-05-05 00:00:00 UTC 5109.705 320224.17
3 2019-05-05 01:00:00 UTC 5120.957 14430.50
4 2019-05-05 02:00:00 UTC 5130.345 113584.80
5 2019-05-05 03:00:00 UTC 5128.678 19751.94
6 2019-05-05 04:00:00 UTC 5112.641 45443.53

Where to get (free) Bitcoin and cryptocurrency data?

I Method 3:

library(RCurl)
URL <- paste0("http://data.bitcoinity.org/export_data.csv?",

"currency=EUR&data_type=price_volume&exchange=bitstamp&r=hour",
"&t=lb×pan=30d")

x <- getURL(URL)
x <- read.csv(textConnection(x))
head(x)

Time price volume
1 2019-05-04 23:00:00 UTC 5161.323 367697.63
2 2019-05-05 00:00:00 UTC 5109.705 320224.17
3 2019-05-05 01:00:00 UTC 5120.957 14430.50
4 2019-05-05 02:00:00 UTC 5130.345 113584.80
5 2019-05-05 03:00:00 UTC 5128.678 19751.94
6 2019-05-05 04:00:00 UTC 5112.641 45443.53

Where to get (free) Bitcoin and cryptocurrency data?

The three methods deliver the same data, but the first two may
not work properly on platforms different from Windows.

Note that I used the paste0() function to divide a long code line
over multiple lines to satisfy publication margins. This is not
necessary for real-life programming, but it makes the code
organized and concise.

Using the first method, I wrote a small function called
bitcoinity_download which is included in the bitcoinFinance
package.

Where to get (free) Bitcoin and cryptocurrency data?
bitcoinity_download <- function(currency="USD",

data_type="price_volume",
exchange="bitstamp",
freq="hour",
time_length="30d",
sd=NULL){

baseurl = "http://data.bitcoinity.org/export_data.csv?"
if(is.null(exchange)){

url=paste0(baseurl,"currency=",currency,"&data_type=",data_type,
"&r=", freq, "×pan=",time_length)

}
if(is.null(exchange)&!is.null(sd)){

url=paste0(baseurl,"currency=",currency,"&data_type=",data_type,
"&r=", freq, "×pan=",time_length, "&sd=", sd)

}
if(!is.null(exchange)){
url=paste0(baseurl,"currency=",currency,"&data_type=",data_type,

"&exchange=",exchange,"&r=", freq, "×pan=",time_length)
}
if(!is.null(exchange)&!is.null(sd)){

url=paste0(baseurl,"currency=",currency,"&data_type=",data_type,
"&exchange=",exchange,"&r=", freq, "×pan=",time_length, "&sd=", sd)

}
x = read.csv(file=url)
return(x)

}

Where to get (free) Bitcoin and cryptocurrency data?

An example is reported below:

dat<-bitcoinity_download(currency="EUR")
head(dat)

Time price volume
1 2018-08-18 12:00:00 UTC 5693.920 169829.5
2 2018-08-18 13:00:00 UTC 5574.136 1307744.4
3 2018-08-18 14:00:00 UTC 5568.665 800261.7
4 2018-08-18 15:00:00 UTC 5546.452 242329.5
5 2018-08-18 16:00:00 UTC 5542.700 159812.0
6 2018-08-18 17:00:00 UTC 5541.787 129611.9

Chapter 3: Liquidity measures

Liquidity measures
Liquidity is notoriously tricky to define and to measure, see
e.g. Goodhart (2008) and Persaud (2006). This is why scholars
define it more often as a set of features rather than as a
unidimensional concept (Nikolaou (2009)).

It has so many facets that, according to Goodhart (2008) “it is
often counter-productive to use it without further and closer
definition”.

The textbook in chapter 3 provides a review of the main liquidity
measures and shows several examples with R:

I Volume-related Liquidity Measures
I Time-related Liquidity Measures
I Spread-related Liquidity Measures
I Multi-dimensional Liquidity Measures

A small example: liquidity measures from Bitcoinity
We already met the interesting website https://data.bitcoinity.org which is
probably one of the most user-friendly websites dedicated to Bitcoin exchanges.
We now focus on one liquidity measure which is freely available on this website.

One available measure is the average number of trades per minute Nt , which
was the first time-related measure we saw during the previous theoretical
review, see the Figure below for an example.

Figure 1: Trades per minutes - data.bitcoinity.org.

https://data.bitcoinity.org

A small example: liquidity measures from Bitcoinity
This measure can be computed with an hourly, daily and weekly
data frequency: hourly data can be downloaded for the last 30
days, while daily and weekly data are available for the whole time
span possible for each exchange.

To download the last 30 days of the hourly average number of
trades per minute for BTC/EUR at Bitspamp, we can use the
function bitcoinity_download() from the bitcoinFinance
package:
dat<-bitcoinity_download(currency="EUR", data_type="tradespm",

exchange="bitstamp")
head(dat)

Time X
1 2017-08-03 22:00:00 UTC 2.0166667
2 2017-08-03 23:00:00 UTC 2.4500000
3 2017-08-04 00:00:00 UTC 1.1333333
4 2017-08-04 01:00:00 UTC 1.1166667
5 2017-08-04 02:00:00 UTC 0.1333333
6 2017-08-04 03:00:00 UTC 0.1000000

Chapter 4: What is bitcoin fundamental value?
A review of financial and economic approaches

A long-term upper bound: Market Sizing

Market sizing is basically the process of estimating the potential of
a market and this is widely used by companies which intend to
launch a new product or service.

Woo et al. (2013) in a Bank of America Merrill Lynch report
estimated separately the value of bitcoin as a A) medium of
exchange and as B) store of value and then summed them up to
get a rough estimate of bitcoin fair value.

This method is fully discussed in the textbook and implemented in
the bitcoinFinance package. Note that many methods proposed
in recent years are basically variants of this approach.

A short-term lower bound: the marginal cost of bitcoin
production

Garcia et al. (2014) were the first to suggest that the fundamental
value of one bitcoin should be at least equal to the cost of the
energy involved in its production through mining.

⇒ lower bound estimate of bitcoin fundamental value.

More recently, a more refined model for the cost of bitcoin
production was developed by Hayes (2015a,b). Variables to
consider:

1) the cost of electricity, measured in cents per kilowatt-hour;
2) the energy consumption per unit of mining effort, measured in

watts per GH/s (1 W/GH/s=1 Joule/GH);
3) the bitcoin market price;
4) the difficulty of the bitcoin algorithm;
5) the block reward (currently 12,5 BTC), which halves approx.

every 4 years

A lower bound: the marginal cost of bitcoin production
In a competitive commodity market, an agent would undertake
mining if the marginal cost per day (electricity consumption) were
less than or equal to the marginal product (the number of bitcoins
found per day on average multiplied by the dollar price of bitcoin).

Hayes (2015a,b) develops his model by assuming that a miner’s
daily production of bitcoin depends on its own rate of return,
measured in expected bitcoins per day per unit of mining power.

The expected number of bitcoins expected to be produced per day
can be calculated as follows:

BTC/day∗ = [(β · ρ)/(δ · 232)] · sechr · hrday (1)

where β is the block reward (currently 12,5 BTC/block), ρ is the
hashing power employed by a miner, and δ is the difficulty (which
is expressed in units of GH/block).

A lower bound: the marginal cost of bitcoin production
The constant sechr is the number of seconds in an hour (3600),
while hrday is the number of hours in a day (24).

The constant 232 relates to the normalized probability of a single
hash per second solving a block, and is a feature of the 256-bit
encryption at the core of the SHA-256 algorithm.

These constants which normalize the dimensional space for daily
time and for the mining algorithm can be summarized by the
variable θ, given by θ = 24hrday · 3600/232sechr =
0.0000201165676116943. Equation (1) can thus be rewritten
compactly as follows:

BTC/day∗ = θ · (β · ρ)/δ (2)

Hayes (2015a,b) sets ρ = 1000 GH/s even though the actual
hashing power of a miner is likely to deviate greatly from this
value. However, Hayes (2015a,b) argues that this level tends to be
a good standard of measure.

A lower bound: the marginal cost of bitcoin production

The cost of mining per day, Eday can be expressed as follows:

Eday = (price per kWh · 24 hrday ·W per GH/s)(ρ/1000GH/s) (3)

Assuming that the bitcoin market is a competitive market, the
marginal product of mining should be equal to its marginal cost, so
that the $/BTC (equilibrium) price level is given by the ratio of
(cost/day) / (BTC/day):

p∗ = Eday/(BTC/day∗) (4)

⇒ This price level can be though as a price lower bound, below
which a miner would operate at a marginal loss and would
probably stop mining.

A lower bound: the marginal cost of bitcoin production
Example: use the world average electricity cost ≈ 13.5
cents/KWh, the average energy efficiency of bitcoin mining
hardware≈ 0.25J/GH
⇒ the average cost per day for a 1000 GH/s mining rig is:
Eday = (price per kWh · 24 hrday ·W per GH/s)(ρ/1000GH/s)

= (0.135 · 24 · 0.25) · (1, 000/1, 000) = 0.81$/day
The number of bitcoins that a 1000 GH/s of mining power can
find in a day with a current difficulty of 2227847638504 is equal to
BTC/day∗ = θ · (β · ρ)/δ =

= 0.0000201165676116943 · (12, 5 · 1e12)/2227847638504
= 0.000112869969561757BTC/day .

The $/BTC price is given by equation (4):
p∗ = Eday/(BTC/day∗) =

= (0.81$/day)/(0.000112869969561757BTC/day)
≈ 7176.40 $/BTC

A lower bound: the marginal cost of bitcoin production
We can compute the bitcoin lower bound with inputs given by the
user using the function btc.lower.bound.user() from the
bitcoinFinance package:

btc.lower.bound.user=function(block.reward = 12.5,
hashing.power.miner = 10^12, Difficulty = 559970892890,
price.kWh=0.125, W.GHs=0.25){
theta<-(24*3600)/(2^(32))
BTCday <- theta*block.reward*hashing.power.miner/Difficulty
cost.mining.day <- price.kWh*24*W.GHs/(hashing.power.miner/10^12)
price.bitcoin <- cost.mining.day/BTCday
return(price.bitcoin)

}

As an example, I replicate the example in Fantazzini et al. (2016):

btc.lower.bound.user(Difficulty=60883825480, price.kWh=0.135,
W.GHs=0.75)

[1] 588.3616

Chapter 5: Bitcoin Market Price Discovery

Bitcoin Market Price Discovery
Brandvold et al. (2015) are the first (and so far the only ones) to
study the price discovery process in the Bitcoin market, which
consists of several independent exchanges.

This topic is frequently discussed in the bitcoin community because
knowing which exchange reacts most quickly to new information
(thus reflecting the value of Bitcoin most precisely), is clearly of
outmost importance for both short-term traders and long-term
investors.

The price discovery literature employs mainly three methodologies:

I the information share method by Hasbrouck (1995),
I the permanent-transitory decomposition by Gonzalo and

Granger (1995)
I the structural multivariate time series model by de Jong et

al. (2001) which is an extension of Harvey (1989).

Bitcoin Market Price Discovery

Brandvold et al. (2015) used the method by de Jong et al. (2001)
because

I it has the advantage that the information share is uniquely
defined, unlike the information share computed with the
Hasbrouck’s (1995) model,

I and it takes the variance of innovations into account, unlike
Gonzalo and Granger (1995), so that a price series with low
innovation variance gets a low information share.

This multivariate model by de Jong et al. (2001) was proposed to
estimate the information share of various exchanges with respect
to the information generated by the whole market.

Bitcoin Market Price Discovery
⇒ The prices are composed of two components, one common
(unobserved) underlying random walk and an idiosyncratic specific
noise for each exchange.

⇒ The random walk component is interchangeably referred to
either as the efficient price or the fundamental news component.

⇒ It follows immediately from this model structure that the
exchanges’ prices are cointegrated by construction, while the
idiosyncratic component can be due to specific conditions at an
exchange, traders’ strategic behaviour, or other shocks.

The theoretical setup in Brandvold et al. (2015) assumes n
individual exchanges and m corresponding markets, with
m = n, whereas a market for an exchange is defined as all the
other exchanges combined.

Bitcoin Market Price Discovery: an R example

Brandvold et al. (2015) used data from seven exchanges: Bitfinex,
Bitstamp, BTC-e (Btce), BTC China(Btcn) and Mt.Gox (Mtgox),
Bitcurex and Canadian Virtual Exchange (Virtex). Data covered the
period April 1st 2013–February 25th 2014, till bankruptcy of Mtgox.

They found that the two exchanges with positive ψ for the entire period
were Btce and Mtgox, thus indicating that these exchanges were more
informative than their competitors.

Similar evidence was provided by the information share, which was
highest for Btce and Mtgox (0,322 and 0.366, respectively).

⇒ Information shares change over time: for example, the information
share of Btcn first increased from 0.040 in April 2013 to 0.325 in
December 2013 because some large Chinese companies (like Baidu)
started accepting Bitcoin as payment, but then its information share fell
to 0.124 in January 2014 after the Chinese government banned payment
companies from clearing Bitcoin.

Bitcoin Market Price Discovery: an R example

⇒ An empirical example with R using the function
information_shares() from the bitcoinfinance package.

I show an example using the bitcoin prices from five exchanges
covering the time sample [2016-10-20/2017-04-20]: Bitstamp,
Itbit, Gdax, Kraken, and Localbitcoins.

The latter is not formally an exchange, but an online service which
facilitates over-the-counter trading of local currency for bitcoins,
that is it gives the opportunity to a buyer and a seller to conduct
direct transactions.

Bitcoin Market Price Discovery: an R example
data_file<-system.file("extdata", "btcusd_IS.csv", package = "bitcoinFinance")
dat<-read.csv(file = data_file,header = TRUE,sep = ";",dec = ".")

Vector of activity shares based on trading volumes and trades frequency
pivector<-c(0.33,0.06,0.48,0.11,0.02)
bitcoinFinance::information_shares(dat,pi=pivector, opt_method="nlminb")

Information shares PSI_coefficients
1 0.24368444 -8.440675e-04
2 0.05667536 -1.788117e-04
3 0.42498757 -3.698466e-04
4 0.11338134 9.919682e-05
5 0.16127130 2.279428e-02

Robustness check: vector of activity shares set to 1/n for all five exchanges
n<-ncol(dat)-1
pivector<-c(rep(1/n,n))
bitcoinFinance::information_shares(dat,pi=pivector, opt_method="nlminb")

Information shares PSI_coefficients
1 0.1028536 -0.0015674684
2 0.1074254 -0.0014937014
3 0.1411473 -0.0009495954
4 0.1244755 -0.0012185958
5 0.5240982 0.0052293611

Chapter 6: Univariate time series models

Univariate time series models: ARIMA models

A time series Yt is called integrated to the d th degree, if it has to
be differenced d-times to become covariance stationary.

In short we write Yt ∼ I(d) then its d th difference
∆dYt ≡ (1− L)dYt is stationary. (1− L)d is a lag polynomial of
order d . Since the d roots of this polynomial are one, an
integrated process is called a unit root process.

In general, a time series Yt is called an AutoRegressive Integrated
Moving Average (ARIMA) process of order (p, d , q) if it is of the
following form,

Φp(L)(1− L)dYt = c + Θq(L)εt ,

where (1− L)dYt , that is the d-th difference of Yt , is itself an
ARMA(p, q)-process.

Univariate time series models: ARIMA models

One classical methodology proposed to select the best ARIMA
model for a specific dataset is the Box and Jenkins modelling
philosophy which consists of the following steps (see Box et
al. (2015) for more details):

I Model identification,

I Model estimation,

I (In-sample) Model evaluation, and re-specification of the
model if necessary,

I Forecasting and (out-of-sample) model evaluation.

Univariate time series models: ARIMA models
Let’s use this algorithm to our bitcoin historical price series:
path.bit<-system.file("extdata","coindesk-bpi-USD-close.csv",package="bubble")
dat <- read.table(path.bit, dec = ".", sep =",", header = TRUE)
dat <- xts::xts(dat[,2], order.by=as.Date(dat[,1]))
forecast::tsdisplay(dat)

dat

0 500 1000 1500 2000

0
20

0
40

0
60

0
80

0

●●
●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●
●●●●●
●●●
●●●
●
●
●●●●
●
●

●

●

●●
●●●
●
●
●●
●●●
●●●●●●

●●
●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●

●●●●
●●
●●
●●
●
●●●●
●●●●●
●●
●
●
●

●

●
●
●
●
●

●
●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●●

●●
●

●
●
●
●●
●
●

●
●

●

●
●

●

●●
●

●

●
●●
●
●
●
●

●●●●●

●

●
●

●
●●
●●●●●●

●

●

●
●●●●
●

●

●●

●●●●

●
●

●●

●●

●●

●
●●

●●●●

●●
●●●●
●
●●●●●●

●
●●●
●●●

●
●●

●●
●

●●
●
●●
●●●

●

●●●

●

●●

●
●
●●●●●
●

●●
●●
●●
●●●●●●●●

●●
●●●●●●●●●

●●

●●●

●
●
●●●

●●
●

●●

●
●●●●●●

●

●
●
●
●●
●●
●●●●●
●
●
●
●●●

●●
●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●
●
●●●●●●●●●●●●

●

●
●
●
●

●
●
●●●
●
●●
●●●●●
●●●●
●●●●●●●●●●●●●●

●

●
●●●

●
●
●●●
●●
●●●
●

●●●
●
●●●●
●
●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●
●●●

●●
●
●
●●
●●
●●●
●●●●●●●●

●●●●●●●●●●●●●●●
●●●●
●●
●●●●●●●●●●●●

●
●●
●●●●●●●

●

●

●●●●
●●
●●●
●●
●●

●●●●●
●●●●●●●●●●●

●
●
●●●●●●●●●●●●

●●●
●●●●●●●

●●●●●●●●●

●●●●
●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●●●●●●
●●●●●
●●
●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●
●●●●
●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●

●●●●
●●
●●
●
●
●

●

●●
●
●●●●

●
●
●●●
●
●●●●●●●●●●

●●●
●●●●●●

●●●
●●●

●
●●●
●●●●●
●●●●
●●

●●●
●●●●●●●●●

●●●●●
●●●

●

●●●●

●●

●●
●
●●●
●●●●●●●

●●●●●●●●
●●
●●●
●●●
●●●
●●●
●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●

●●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

PA
C

F

Univariate time series models: ARIMA models
> tseries::adf.test(dat)

Augmented Dickey-Fuller Test
data: dat
Dickey-Fuller = -2.9349, Lag order = 12, p-value = 0.1825
alternative hypothesis: stationary
> tseries::kpss.test(dat)

KPSS Test for Level Stationarity
data: dat
KPSS Level = 10.477, Truncation lag parameter = 10, p-value = 0.01
> tseries::kpss.test(diff(dat))

KPSS Test for Level Stationarity
data: diff(dat)
KPSS Level = 0.029084, Truncation lag parameter = 10, p-value = 0.1

diff(dat)

0 500 1000 1500 2000

−
20

0
−

10
0

0
10

0
20

0

●●●
●●
●
●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●
●●●●●●●●

●●●●●
●●●●
●
●

●
●●
●

●
●●●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●
●

●
●
●●

●

●
●
●

●
●
●

●●

●

●

●●

●

●
●●
●
●
●
●●
●
●
●●●●●●●●●

●
●●●●
●
●●●●
●●●●
●
●
●

●●●
●●
●●●
●
●●●●●
●
●●●
●
●●

●

●

●

●

●

●
●●●

●●
●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●
●●●
●●●
●●
●
●●
●●
●●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●●●●●●●●

●●●●
●●
●
●
●●
●

●

●●

●
●
●

●
●●●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●●●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●
●
●●
●

●
●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●
●

●●
●●●

●

●

●
●

●

●●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●●

●
●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●●

●
●

●●
●●●●●

●

●
●●●●

●

●●

●
●●●●
●●
●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●
●
●

●

●
●●

●

●

●
●
●
●
●
●●
●
●●
●●

●●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●

●
●

●
●
●

●

●

●
●
●●
●
●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●●●
●●

●
●●

●●
●
●●
●
●
●

●

●●

●
●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●●●

●

●

●
●

●

●
●

●

●
●

●
●
●

●
●
●

●
●

●

●

●

●
●●

●●

●

●
●

●●
●●
●●●

●
●

●

●

●

●

●●●
●

●●●●

●

●
●
●●

●

●
●
●
●

●

●●●
●
●
●●

●

●

●●●
●

●

●

●●●
●

●

●
●
●●●●
●

●●●
●
●
●●

●
●

●●

●
●●●
●

●●●●●

●

●●

●

●
●●
●●
●

●●
●●
●●
●
●●●●●●

●●
●
●●●●●●●●●●

●●●●●●
●
●●●●●●●

●

●●●
●●
●
●●
●●
●

●

●●

●●
●●
●

●●
●
●

●
●

●

●

●●●
●
●●
●
●
●●

●

●●●●
●●●●
●●
●
●●●

●

●
●
●

●●
●
●●●

●

●●

●●●

●

●
●
●
●
●●●●
●●
●●●●●
●
●●
●●
●●●
●
●●●●
●
●
●●●●
●
●●
●●●●●
●
●●
●●●●
●●●
●●

●
●
●
●

●
●●●●
●●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●
●
●
●
●
●
●●●

●

●

●
●

●
●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●●
●
●

●

●

●
●

●

●

●●
●●
●
●●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●●
●

●

●
●
●
●
●
●
●
●●
●

●

●●●
●

●

●●

●

●
●
●
●●●●
●
●
●●

●●
●●
●●

●

●●●●●

●

●●●
●
●●
●●
●

●
●
●
●●●●●●●●●●

●●●●●
●
●●
●
●●

0 5 10 15 20 25 30

−
0.

15
−

0.
05

0.
05

0.
15

Lag

A
C

F

0 5 10 15 20 25 30

−
0.

15
−

0.
05

0.
05

0.
15

Lag

PA
C

F

Univariate time series models: ARIMA models
Bitcoin prices are clearly not stationary, whereas their first difference
definitely is.

The next step is to find the best ARIMA model using the Hyndman and
Khandakar (2008) algorithm: to decrease the computational burden, I
consider a max of 60 lags for both the autoregressive and moving parts, I
avoid using any seasonal ARIMA, I use log-prices to stabilize the variance
and improve the model fit, and parallel computation is employed.

fit <- forecast::auto.arima(log(dat), max.p = 60, max.q = 60,
stepwise = FALSE,seasonal = FALSE, parallel = TRUE, num.cores= 8)

fit
Series: log(dat)
ARIMA(2,2,3)
Coefficients:

ar1 ar2 ma1 ma2 ma3
-1.6232 -0.7789 0.6831 -0.8270 -0.8196

s.e. 0.1431 0.1272 0.1306 0.0361 0.1128

sigma^2 estimated as 0.00385: log likelihood=2861.28
AIC=-5710.57 AICc=-5710.53 BIC=-5676.66

forecast::Acf(residuals(fit), lag.max = 200)

Univariate time series models: ARIMA models

>Box.test(residuals(fit), fitdf=35, lag=200, type="Ljung")
Box-Ljung test
data: residuals(fit)
X-squared = 260.56, df = 195, p-value = 0.001184

exp(as.data.frame(forecast::forecast(fit, h=5)))
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

2105 442.7872 408.9425 479.4329 392.0863 500.0442
2106 443.5516 395.0247 498.0398 371.5237 529.5437
2107 444.2546 385.3125 512.2134 357.3453 552.3010
2108 444.9573 377.0823 525.0499 345.4491 573.1294
2109 445.7125 369.9175 537.0377 335.1602 592.7303

It seems that long-range seasonal and non-seasonal dependence and
(several) structural breaks remain to be modelled: we leave this task to
the interested reader as an (hopefully) interesting exercise.

ETS (Error-Trend-Seasonal or ExponenTial Smoothing)

The general structure of this framework is to decompose a time
series Y into three components:

I a trend (T) (= the long-term component of Y),
I a seasonal pattern (S),
I and an error term (E).

These components can enter the model specification as,

I additive terms (for example Y = T + S + E),
I multiplicative (for example Y = T · S · E)
I or both (for example, Y = (T · S) + E).

ETS (Error-Trend-Seasonal or ExponenTial Smoothing)
Moreover, the trend component can be decomposed into a level
term (l) and a growth term (b) and it can be “dampened” by
using an additional parameter 0 < φ < 1 , so that five different
trend types are possible:
I None: Th = l
I Additive: Th = l + bh
I Additive damped: Th = l + bφh
I Multiplicative: Th = l · bh

I Multiplicative damped: Th = l · bφh

where Th is the the trend forecast h periods out, while
φh =

∑h
s=1 φ

s , see Hyndman et al. (2008).

Therefore, the single components of an ETS model can have these
specifications (for a total of 30 = 5 · 3 · 2 possible ETS models):

Error Addittive (A) Multiplicative (M)
Trend None (N) Addittive (A) Multiplicative (M) Addittive Damped Multiplicative Damped
Seasonal None (N) Addittive (A) Multiplicative (M)

ETS (Error-Trend-Seasonal or ExponenTial Smoothing)
The detailed equations for all the 30 possible ETS models are reported in
Hyndman et al (2008) - Tables 2.2 and 2.3, p. 21-22, and I refer the
interested reader to that textbbok for more details. Some examples are
below:

I ETS(A, N, N): this is the simple exponential smoothing model,
where the current value of the level term lt = αyt + (1− α)ŷt is the
weighted average of yt and its forecasted value ŷt , with ŷt = lt−1.
By straightforward substitution, the full model can be written
according to the following state space specification:

Observation equation: yt = lt−1 + εt

State equation: lt = lt−1 + αεt

I ETS(A,A,A): this is the additive Holt-Winters method with additive
errors. Its state space representation is given below:

Observation equation: yt = lt−1 + bt−1 + st−m + εt

State equations: lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

st = st−m + γεt

ETS (Error-Trend-Seasonal or ExponenTial Smoothing)
Hyndman et al. (2002, IJF) suggest to use the following automatic
forecasting procedure:

I Apply each of the 30 models that are appropriate to the dataset,
and estimate parameters and initial values using maximum
likelihood or other methods;

I Select the best model using AIC (or other criteria);
I Produce forecasts using best method;
I Obtain prediction intervals using underlying state space model

We are now ready to see an example in R, using the ets() function from
the forecast package. This function automatically chooses the best ETS
model according to the AIC, AICc or BIC and produce forecast intervals
for every model.Let’s see it in more details:
ets(y, model = "ZZZ", damped = NULL, alpha = NULL, beta = NULL,

gamma = NULL, phi = NULL, additive.only = FALSE, lambda = NULL,
biasadj = FALSE, lower = c(rep(1e-04, 3), 0.8), upper = c(rep(0.9999,

3), 0.98), opt.crit = c("lik", "amse", "mse", "sigma",
"mae"), nmse = 3, bounds = c("both", "usual", "admissible"),

ic = c("aicc", "aic", "bic"), restrict=TRUE,allow.multiplicative.trend=FALSE,
use.initial.values = FALSE, ...)

ETS (Error-Trend-Seasonal or ExponenTial Smoothing)
An example with our log-transformed bitcoin data is reported below:

path.bit <- system.file("extdata","coindesk-bpi-USD-close.csv",package="bubble")
dat <- read.table(path.bit, dec = ".", sep =",", header = TRUE)
dat <- xts::xts(dat[,2], order.by=as.Date(dat[,1]))
#Choose the optimal ETS model
fit.ets <- forecast::ets(log(dat))
fit.ets

ETS(A,Ad,N)
Call:
forecast::ets(y = log(dat))
Smoothing parameters:

alpha = 0.9999
beta = 0.0234
phi = 0.9745

Initial states:
l = -2.4312
b = -0.0248

sigma: 0.062
AIC AICc BIC

4407.144 4407.184 4441.054

#Plot the ETS model states
plot(exp(fit.ets$states), main="")

ETS (Error-Trend-Seasonal or ExponenTial Smoothing)

0
20

0
40

0
60

0
80

0
10

00

l

0.
97

0.
98

0.
99

1.
00

1.
01

1.
02

1.
03

0 500 1000 1500 2000

b

Time

ETS (Error-Trend-Seasonal or ExponenTial Smoothing)

Forecast 3-step ahead with confidence intervals
exp(as.data.frame(forecast::forecast(fit.ets, h=3)))

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
2105 442.6608 408.8725 479.2412 392.0430 499.8140
2106 443.1538 395.5769 496.4528 372.4952 527.2157
2107 443.6348 385.4269 510.6334 357.7720 550.1041

The ets() function also allows refitting model to a new dataset, which
can be handy if accuracy measures have to be computed:

fit.ets1 <- forecast::ets(log(dat[1:2000]))
forecast::accuracy(exp(forecast(fit.ets1, h=10)$mean) , dat[2001:2010])

ME RMSE MAE MPE MAPE
Test set -40.66515 53.23313 40.66515 -10.36078 10.36078

where accuracy is a function which computes a range of summary
measures of the forecast accuracy.

Bayesian structural time series models
The Bayesian structural time series (BSTS) approach proposed by
Scott and Varian (2014) and Scott and Varian (2015) is an
integrated system which combines three methods: a structural
model for trend and seasonality estimated with a Kalman filter, a
“spike and slab” regression for variable regression, and Bayesian
model averaging to obtain the final forecast.

A structural time series model is composed of two equations:

Observation equation: yt = Z ′tαt + εt εt ∼ N(0,Ht)
Transition equation: αt = Ttαt−1 + Rtηt ηt ∼ N(0,Qt)

where yt is the observed data at time t, α is a vector of latent
variables (the so-called “state”), Zt , Ht , Tt , Rt and Qt are
structural parameters (some of which are known).

⇒ The observation equation links the observed data yt to the
unobserved state αt , while the transition equation models the
dynamics of the latent state.

Bayesian structural time series models
A basic structural model with a trend, a seasonal pattern τt and a
regression component β′xt can be written as follows:

yt = µt + τt + β′xt + εt

µt = µt−1 + δt−1 + ut

δt = δt−1 + νt

τt = −
S−1∑
s=1

τt−s + ωt

where ηt = (ut , νt , ωt) consists of independent normally distributed
white noise processes, Qt is a diagonal matrix with constant
elements σ2

u, σ
2
ν , σ

2
ω, and Ht is a constant scalar σ2

ε .

µt can be interpreted as the current “level” of the (local) linear
trend, while the current “slope” of the trend is represented by δt .

The seasonal component is modelled with S dummy variables with
time varying coefficients, whose sum has zero expectation.

Bayesian structural time series models
The simplest structural time series model is the local level model:

yt = µt + εt εt ∼ N(0, σ2)
µt = µt−1 + ηt ηt ∼ N(0, τ 2)

If σ2 = 0 we have the random walk model, while τ 2 = 0 gives the
constant mean model. The higher the ratio σ2/τ 2 the closer the model is
to the constant mean model. This model can be expressed in state space
form with Tt = 1, Zt = 1, Rt = 1, Ht = σ2, Qt = τ 2.
path.bit<-system.file("extdata","coindesk-bpi-USD-close.csv",package="bubble")
dat <- read.table(path.bit, dec = ".", sep =",", header = TRUE)
dat <- xts::xts(dat[,2], order.by=as.Date(dat[,1]))
ss <- bsts::AddLocalLevel(list(), dat)
model <- bsts::bsts(dat, state.specification = ss, niter = 500)
#Forecasts and confidence interval
pred <- predict(model, horizon = 5, burn = 100)
cbind(pred$mean,t(pred$interval))

2.5% 97.5%
[1,] 443.9637 411.2513 479.2376
[2,] 444.5837 401.9589 491.8797
[3,] 445.9039 392.7868 501.5097
[4,] 446.1968 384.8065 508.2831
[5,] 446.5179 377.0805 511.4161

Bayesian structural time series models

The local linear trend model can be useful if the time series is
trending in a certain direction and forecasts should reflect this
trend observed in recent observations:

yt = µt + εt εt ∼ N(0, σ2)
µt = µt−1 + δt−1 + ηµ,t ηµ,t ∼ N(0, τ2

µ)
δt = δt−1 + ηδ,t ηδ,t ∼ N(0, τ2

δ)

The local linear trend model can be used to find short term
changes in the trend, but it forget the past rather quickly by
construction and it is extremely volatile.

Moreover, if necessary, a seasonal component
τt = −

∑S−1
s=1 τt−s + ηω,t with ηω,t ∼ N(0, τ2

ω) can be added.

Bayesian structural time series models
path.bit<-system.file("extdata","coindesk-bpi-USD-close.csv",package="bubble")
dat <- read.table(path.bit, dec = ".", sep =",", header = TRUE)
dat <- xts::xts(dat[,2], order.by=as.Date(dat[,1]))
ss <- bsts::AddLocalLinearTrend(list(), dat)
A weekly seasonal component is added
ss<-bsts::AddSeasonal(ss,dat,nseasons = 7)
model <- bsts::bsts(dat, state.specification = ss, niter = 500)
plot(model, "comp", same.scale = FALSE) ## See the model "components"

Bayesian structural time series models

#Forecasts and confidence interval
pred <- predict(model, horizon = 5, burn = 100)
cbind(pred$mean,t(pred$interval))

2.5% 97.5%
[1,] 443.8838 407.8434 480.3156
[2,] 442.7382 396.2476 488.5442
[3,] 444.3841 388.4584 501.1000
[4,] 446.8170 382.3488 513.6280
[5,] 448.4238 370.3549 525.2556

As expected, the seasonal component of the bitcoin price is estremely
small compared to the local trend component.

Chapter 7: Multivariate time series models

Modelling bitcoin price dynamics: VAR & VECM

Most macro-financial analyses devoted to bitcoin prices employ:

1) Vecto-AutoRegression (VAR) models,

∆Yt−1=α + Φ1∆Yt−1+Φ2∆Yt−2+...+Φp∆Yt−p+εt (5)

2) Vector Error Correction (VEC) models,

∆Yt−1=α+BΓYt−1+ζ1∆Yt−1+ζ2∆Yt−2+...+ζp−1∆Yt−(p−1)+εt
(6)

where B are the factor loadings, while Γ the cointegrating vector.

Kristoufek (2013) is the first author to propose a multivariate
approach: hefound a significant bidirectional relationship, where
Google trends search queries influence prices and viceversa,
suggesting that speculation and trend chasing dominate the bitcoin
price dynamics.

Modelling bitcoin price dynamics: VAR & VECM
Glaser et al. (2014) extended previous research by studying the
aggregated behavior of new and uninformed Bitcoin users within
the time span from 2011 to 2013, to identify why people gather
information about Bitcoin and their motivation to subsequently
participate in the Bitcoin system.

The main novelty is the use of regressors that are related to both
bitcoin attractiveness and bitcoin supply and demand:

I daily BTC price data,
I daily exchange volumes in BTC,
I Bitcoin network volume, which includes all Bitcoin transfers

caused by monetary transactions within the Bitcoin currency
network,

I daily views on the English Bitcoin Wikipedia page as a proxy
for measuring user attention,

I dummy variables for 24 events gathered from
https://en.bitcoin.it/wiki/History.

Modelling bitcoin price dynamics: VAR & VECM
→ Glaser et al. (2014) are the first to consider both exchange
(EV) and network volumes (NV): their idea is that if a customer
want to buy bitcoin to pay for goods or services, exchange and
network volumes will share similar dynamics, otherwise only
exchange-based volumes will be affected.

⇒ They found that the both increases in Wikipedia searches and
in exchange volumes do not impact network volumes, and there is
no migration between exchange and network volumes, so that they
argued that (uninformed) users mostly stay within exchanges,
holding Bitcoin only as an alternative investment and not as a
currency.

⇒ Glaser et al. (2014) found that Bitcoin users seem to be
positively biased towards Bitcoin, because important negative
events, like thefts and hacks, did not lead to significant price
corrections.

Modelling bitcoin price dynamics: VAR & VECM

Bouoiyour and Selmi (2015), Bouoiyour et al. (2015) and Kancs et
al. (2015) are the first studies to consider three sets of drivers to
model bitcoin price dynamics:

I technical drivers (bitcoin supply and demand),
I attractiveness indicators
I and macroeconomic variables.

In general, all papers confirm that bitcoin attractiveness factors
are still the main drivers of bitcoin price, followed by traditional
supply and demand related variables, while global macro-financial
variables play no role.

Example: Bouoiyour and Selmi (2015) use these variables: . . .

Modelling bitcoin price dynamics: VAR & VECM

Modelling bitcoin price dynamics: VAR & VECM

⇒ Using a dataset spanning between 05/12/2010 and
14/06/2014, Bouoiyour and Selmi (2015) found that in the
short-run, the investors attractiveness, the exchange-trade ratio,
the estimated output volume and the Shangai index have a
positive and significantly impact on Bitcoin price, while the
monetary velocity, the hash rate and the gold price have no effect.

⇒ Instead, in the long-run, only the exchange-trade ratio and the
hash rate have a significant impact on bitcoin price dynamics.

These results hold also with the inclusion of a dummy variable to
account for the bankruptcy of a major Chinese bitcoin trading
company in 2013, with oil prices, the Dow Jones index and a
dummy variable to consider the closure of the Road Silk by the FBI
in October 2013.

Modelling bitcoin price dynamics: VAR & VECM

Most macro-financial analyses devoted to bitcoin prices employ:

1) Vecto-AutoRegression (VAR) models,

∆Yt−1=α + Φ1∆Yt−1+Φ2∆Yt−2+...+Φp∆Yt−p+εt (7)

2) Vector Error Correction (VEC) models,

∆Yt−1=α+BΓYt−1+ζ1∆Yt−1+ζ2∆Yt−2+...+ζp−1∆Yt−(p−1)+εt
(8)

where B are the factor loadings, while Γ the cointegrating vector.

Kristoufek (2013) is the first author to propose a multivariate
approach: hefound a significant bidirectional relationship, where
Google trends search queries influence prices and viceversa,
suggesting that speculation and trend chasing dominate the bitcoin
price dynamics.

Modelling bitcoin price dynamics: VAR & VECM
Glaser et al. (2014) extended previous research by studying the
aggregated behavior of new and uninformed Bitcoin users within
the time span from 2011 to 2013, to identify why people gather
information about Bitcoin and their motivation to subsequently
participate in the Bitcoin system.

The main novelty is the use of regressors that are related to both
bitcoin attractiveness and bitcoin supply and demand:

I daily BTC price data,
I daily exchange volumes in BTC,
I Bitcoin network volume, which includes all Bitcoin transfers

caused by monetary transactions within the Bitcoin currency
network,

I daily views on the English Bitcoin Wikipedia page as a proxy
for measuring user attention,

I dummy variables for 24 events gathered from
https://en.bitcoin.it/wiki/History.

Modelling bitcoin price dynamics: VAR & VECM
→ Glaser et al. (2014) are the first to consider both exchange
(EV) and network volumes (NV): their idea is that if a customer
want to buy bitcoin to pay for goods or services, exchange and
network volumes will share similar dynamics, otherwise only
exchange-based volumes will be affected.

⇒ They found that the both increases in Wikipedia searches and
in exchange volumes do not impact network volumes, and there is
no migration between exchange and network volumes, so that they
argued that (uninformed) users mostly stay within exchanges,
holding Bitcoin only as an alternative investment and not as a
currency.

⇒ Glaser et al. (2014) found that Bitcoin users seem to be
positively biased towards Bitcoin, because important negative
events, like thefts and hacks, did not lead to significant price
corrections.

Modelling bitcoin price dynamics: VAR & VECM

Bouoiyour and Selmi (2015), Bouoiyour et al. (2015) and Kancs et
al. (2015) are the first studies to consider three sets of drivers to
model bitcoin price dynamics:

I technical drivers (bitcoin supply and demand),
I attractiveness indicators
I and macroeconomic variables.

In general, all papers confirm that bitcoin attractiveness factors
are still the main drivers of bitcoin price, followed by traditional
supply and demand related variables, while global macro-financial
variables play no role.

Example: Bouoiyour and Selmi (2015) use these variables: . . .

Modelling bitcoin price dynamics: VAR & VECM

Modelling bitcoin price dynamics: VAR & VECM

⇒ Using a dataset spanning between 05/12/2010 and
14/06/2014, Bouoiyour and Selmi (2015) found that in the
short-run, the investors attractiveness, the exchange-trade ratio,
the estimated output volume and the Shangai index have a
positive and significantly impact on Bitcoin price, while the
monetary velocity, the hash rate and the gold price have no effect.

⇒ Instead, in the long-run, only the exchange-trade ratio and the
hash rate have a significant impact on bitcoin price dynamics.

These results hold also with the inclusion of a dummy variable to
account for the bankruptcy of a major Chinese bitcoin trading
company in 2013, with oil prices, the Dow Jones index and a
dummy variable to consider the closure of the Road Silk by the FBI
in October 2013.

Modelling bitcoin price dynamics: Bayesian VAR
3) Bayesian VARs models
Bayesian methods treat the value of an unknown model parameter
vector θ as a probability distribution π(θ|Y), which is the called
the posterior distribution of θ given the data Y .

The prior distribution, π(θ), is set externally and reflects the
researcher’s prior ideas on the unknown parameter vector, while
l(Y |θ) is the likelihood function, which depends on the information
from the given data Y .

The Bayes’ theorem is then used to link all these distributions by
means of this formula:

π(θ|Y) = π(θ)l(Y |θ)∫
π(θ)l(Y |θ)dθ

Given that the denominator is a normalizing constant, the posterior
is proportional to the product of the likelihood and the prior, that
is π(θ|Y) ∝ π(θ)l(Y |θ).

Modelling bitcoin price dynamics: Bayesian VAR
Let consider the following reduced form VAR,

Yt = Φ0 + Φ1Yt−1 + . . .+ ΦpYt−p + εt , εt ∼ N(0,Σ)
where Yt = (Y1t , . . .Ynt) is a n × 1 vector, Φ0 is a n × 1 vector of
constants, Φl with l = 1, . . . , p are the usual autoregression n × n
coefficient matrices.

The previous equation can be written more compactly as
Yt = Φ′Xt + εt using Xt = [1 Y ′t−1, . . . ,Y ′t−p]′ and
Φ = [Φ0 Φ1 . . .Φp]. If the variables and shocks are further grouped
as follows Y = [Y1, . . . ,YT]′, X = [X1, . . . ,XT]′,
E = [ε1, . . . , εT]′, we can write the VAR model even more
compactly:

Y = XΦ + E
A Bayesian VAR combines the likelihood function L(Y |Φ,Σ) with
a prior distribution p(Φ,Σ) to get a posterior distribution for the
model parameters p(Φ,Σ|Y):

p(Φ,Σ|Y) ∝ p(Φ,Σ)L(Y |Φ,Σ)

Modelling bitcoin price dynamics: Bayesian VAR
There are several possible choices for priors to be used with
Bayesian VAR models: I present below the conjugate
normal-inverse Wishart prior which is a widely used choice and it is
implemented into the bvarr package.The prior is reported below:{

Σ ∼ IW(S, ν)
Φ|Σ ∼ N(Φ,Σ⊗ Ω)

where the scale matrix S is diagonal and its non-zero elements
assure that the mean of Σ is equal to the fixed covariance matrix
of the standard Minnesota prior,

(S)ii = (ν − n − 1)σ̂2
i

and σ2
i is commonly set to be equal to the variance estimate of

residuals in a univariate AR model. The degrees of freedom of the
inverse Wishart distribution are set to be greater than or equal to
the max{n + 2, n + 2h−T} to guarantee the existence of the prior
variance of the regression parameters and the posterior variances of
the forecasts at horizon h.

Modelling bitcoin price dynamics: Bayesian VAR
The matrix Φ is set to Φ = E (Φ) and the matrices Φl are given by:

(Φl)ij =
{
δi , i = j , l = 1
0 otherwise

The matrix Ω is diagonal and it depends on the following
hyperparameters:

Ω = diag{Ω0,Ω1, . . . ,Ωp}

(Ωl)jj =
(

λ

lλl σ̂j

)2
l = 1, . . . , p, Ω0 = λ2

0

where λ determines the overall tightness of the prior and the
relative weight of the prior with respect to the information
incorporated in the data, λl manages the speed of the decrease of
the prior variance with increasing the lag length, while λ0 controls
the relative tightness of the prior for the constant terms.

Modelling bitcoin price dynamics: Bayesian VAR
The posterior distribution formed by combining the previous prior
distribution with a likelihood function is also normal - inverse
Wishart, see e.g. Zellner (1996):{

Σ|Y ∼ IW(S, ν)
Φ|Σ,Y ∼ N(Φ,Σ⊗ Ω)

with the following parameters:

ν = ν + T
Ω = (Ω−1 + X ′X)−1

Φ = Ω · (Ω−1Φ + X ′Y)
S = S + Ê ′Ê + Φ̂′X ′X Φ̂ + Φ′Ω−1Φ− Φ′Ω−1Φ
Φ̂ = (X ′X)−1X ′Y
Ê = Y − X Φ̂

Modelling bitcoin price dynamics: Bayesian VAR
Doan et al. (1984) and Sims (1993) proposed to add two other
priors to the previous prior distribution to include the beliefs that
the data may be non-stationary and cointegrated:

⇒ A sum-of-coefficients prior assumes that the sum of all the lag
parameters for each dependent variable is equal to one. This prior
is implemented by combining the previous system with the
following artificial dummy-observations:

Y SC = 1
λsc

[diag(δ1µ1, . . . , δnµn)]

XSC = 1
λsc

[0n×1 (11×p)⊗ diag(δ1µ1, . . . , δnµn)]

where (11×p) is a unitary [1× p] vector, and µi is i-th component
of vector µ, which contains the average values of initial p
observations of all variables in the sample, µ = 1

p
∑p

t=1 Yt .

When λsc → 0 no cointegration exists and there are as many unit
roots as variables.

Modelling bitcoin price dynamics: Bayesian VAR
⇒ The dummy initial observation prior proposed by Sims (1993)
models the belief that the variables have a common stochastic
trend, so that the average value for a variable is a linear
combination of the average values of all the other variables.

A single dummy observation is added such that the values of all
variables are set to be equal to the averages of the initial
conditions µi normalized with a scaling factor λio:

Y IO = 1
λio

[(δ1µ1, . . . , δnµn)]

X IO = 1
λio

[1 (11×p)⊗ (δ1µ1, . . . , δnµn)]

When λio → 0, the model assumes that either all variables are
stationary with means equal to sample averages of the initial
observations, or non-stationary without drift terms and
cointegrated.

Modelling bitcoin price dynamics: High-dimensional VAR
models with LASSO

The last years have witnessed an increasing statistical literature dealing
with the forecasting of high-dimensional multivariate time series, focusing
particularly on the lasso, see Tibshirani et al. (1996), and its structured
variants like the group lasso proposed by Yuan et al. (2006) and the
sparse group lasso by Simon et al. (2013).

The R package BigVAR adapted the previous penalized regression
solution algorithms to a multivariate time series setting: it considers the
VARX-L framework proposed by Nicholson et al. (2017) and the class of
Hierarchical Vector Autoregression (HVAR) models suggested by
Nicholson et al.(2016) that deals with the issue of VAR lag order
selection by imposing a nested group lasso penalty.

Given the increasing dimension of cryptocurrencies datasets, these
approaches can be of interest to financial professionals and researchers
alike. I focus here on HVAR models.

Hierarchical Vector Autoregression (HVAR) models
4) HVAR class of models: Nicholson et al. (2016) proposed a
class of models which include the lag order selection into
hierarchical group lasso penalties.

HVAR(p) models induce sparsity and a low maximum lag order.
Moreover, lag orders are allowed to change across marginal models,
that is across variables.

The HVAR penalty structures are reported in Table 1.

Table 1: HVAR penalty functions

Group Name PY (Φ)
Componentwise

∑n
i=1

∑p
l=1 ||Φl :p

i ||2

Own/Other
∑n

i=1

∑p
l=1

[
||Φl :p

i ||2 + ||Φl
i,−i , Φ[l+1]:p

i ||2
]

Elementwise
∑n

i=1

∑n
j=1

∑p
l=1 ||Φl :p

ij ||2
Lag-weighted Lasso

∑p
l=1 lγ ||Φl ||1

Hierarchical Vector Autoregression (HVAR) models

The Componentwise HVAR penalty allows for the maximum lag
order to change across marginal models but, within a single
variable equation, all components have the same maximum lag.
Therefore, we can have at maximum n different lag orders.

The Own/Other HVAR penalty is similar to the Componentwise
HVAR, but it prioritizes the coefficients of lagged values of the
series of forecasting interest (the so-called ‘own’ lags) over those of
other variables.

⇒ This approach is similar to a Bayesian VAR with a Minnesota
Prior (Litterman, 1979) where the variable own lags are considered
more informative than the lags of other variables.

Hierarchical Vector Autoregression (HVAR) models

The Elementwise HVAR is the most general structure, because
every variable in every equation is allowed to have its own
maximum lag so that there can be n2 possible lag orders.

The Lag-weighted Lasso penalty structure is a lasso penalty that
increases geometrically with lags and the additional penalty
parameter γ ∈ [0, 1] is jointly estimated with λ using sequential
cross-validation.

Hierarchical Vector Autoregression (HVAR) models

Examples of the previous four sparsity patterns are reported below:

A (simple) forecasting comparison
I performed a simple exercise to backtest the forecasting
performances of the previous multivariate models. I used the
dataset data_bitcoin_multi from the bitcoinfinance package.
This is a dataframe of 1447 rows and 12 columns containing the
following variables:

I timestamp: daily time-stamp;
I Close: Average BTCUSD market price across major bitcoin

exchanges. Source: blockchain.info;
I Volume_traded_USD: The total USD value of trading volume

on major bitcoin exchanges. Source: blockchain.info;
I Google: Normalized daily Google search data for the word

“bitcoin”;
I Transaction_value: The total estimated value of transactions

on the Bitcoin blockchain. Source: blockchain.info;
I Hash_Rate: The estimated number of tera hashes per second

(trillions of hashes per second) the Bitcoin network is
performing. Source: blockchain.info . . .

A (simple) forecasting comparison

I Gold: Gold price in USD. Source: investing.com;
I Shanghai_index: The Shanghai market index. Source:

yahoo.finance;
I total_bitcoins: The total number of bitcoins that have already

been mined; in other words, the current supply of bitcoins on
the network. Source: blockchain.info;

I New_posts: The number of new posts on online BitCoin
forums extracted from bitcointalk.org;

I New_members: The number of new members on online
BitCoin forums extracted from bitcointalk.org;

I Dow_Jones: Dow Jones stock market index. Source:
yahoo.finance;

A (simple) forecasting comparison
I used a 250-day rolling window to compute the 1-step and 10-step
ahead forecasts for each model, as well as the RMSE and MAE.
More specifically, I considered the following models:

I a VAR model with all the variables in levels;
I a VAR model with all the variables in first differences;
I a VAR model with all the variables in log-levels;
I a VAR model with all the variables in first log-differences (= log-returns);
I a VECM model with all the variables in levels/first differences;
I a VECM model with all the variables in log-levels/log-returns;
I a Bayesian VAR model with the conjugate normal-inverse Wishart prior

and all the variables in levels;
I a Bayesian VAR model with the conjugate normal-inverse Wishart prior

and all the variables in first differences;
I a Bayesian VAR model with the conjugate normal-inverse Wishart prior

and all the variables in log-levels;
I a Bayesian VAR model with the conjugate normal-inverse Wishart prior

and all the variables in first log-differences (= log-returns);
I a Elementwise HVAR for data in log-returns.

To simplify the computational setting, I considered only multivariate
models with lags up to 4 and only one HVAR model.

A (simple) forecasting comparison

Despite the limitations of this forecasting exercise, some interesting
results did emerge:

the HVAR model was the best model according to all metrics, thus
confirming the positive evidence reported in Nicholson et
al. (2016) and Nicholson et al. (2017b).

Bayesian models showed -in general- very good results, whereas
cointegrated models had computational problems:

→ the latter evidence is a well known inference issue and I refer
the interested reader to Fantazzini and Toktamysova (2015) -
section 4.4 and references therein- for more details.

Chapter 8: Testing for financial bubbles and
explosive price behavior

Detecting Bubbles and explosive behavior in bitcoin prices

Tests for financial bubbles can be by grouped into two sets:

1. Tests to detect a single bubble:

I the Log Periodic Power Law (LPPL) model;

I the Fry (2014) model and the role of volatility.

2. Tests to detect (potentially) multiple bubbles:

I the DS LPPLS Confidence and Trust indicators;

I the Generalized-Supremum ADF (GSADF) test;

I the EXponential Curve Fitting (EXCF) method.

Due to time constraints, I will briefly present only a couple of them.

Detecting Bubbles and explosive behavior in bitcoin prices
1A) Testing for a single bubble: LPPL models. The expected
value of the asset log price in a upward trending bubble according
to the LPPL equation is given by,
E [ln p(t)] = A + B(tc − t)β + C(tc − t)β cos[ω ln(tc − t)− φ] (9)

where A > 0 is the value of [ln p(tc)] at the critical time tc which
is interpreted as the end of the bubble,

B < 0 the increase in [ln p(t)] over the time unit before the crash

C 6= 0 is the proportional magnitude of the oscillations around the
exponential growth,

0 < β < 1 to ensure a finite price at the critical time tc of the
bubble and quantifies the power law acceleration of prices,

ω is the frequency of the oscillations during the bubble,

while 0 < φ < 2π is a phase parameter.

Detecting Bubbles and explosive behavior in bitcoin prices
Financial bubbles are defined in the LPPL model as transient
regimes of faster-than- exponential price growth resulting from
positive feedbacks, and these regimes represent “positive bubbles”.

Example: Conditions for a (positive) bubble to occur within
this framework:

1. 0 < β < 1, which guarantees that the crash hazard rate
accelerates.

2. The second major condition is that the crash rate should be
non-negative, as highlighted by van Bothmer and Meister
(2003),

b ≡ −Bβ − |C |
√
β2 + ω2 ≥ 0.

3. Lin et al. (2014) added a third condition, requiring that the
residuals from fitting equation (9) should be stationary.

⇒ MacDonell (2014) used the LPPL model to forecast successfully
the bitcoin price crash that took place on December 4, 2013

Detecting Bubbles and explosive behavior in bitcoin prices
To have an idea of the LPPL model, let’s simulate a price
trajectory following this model using the function
lppl_simulate() from the bubble package:

lppl_simulate=function(T=500, true_parm){
bet=true_parm[1]; ome=true_parm[2]; phi=true_parm[3];
A= true_parm[4]; B =true_parm[5]; C= true_parm[6]; ws=true_parm[7];
tc=true_parm[8];
tt_sim=seq(1, T, 1);
sdum=rep(1,T);
f_t=(tc - tt_sim)^bet;
g_t=((tc - tt_sim)^bet)*cos(ome*log(tc - tt_sim) + phi);
x=exp(A*sdum +B*f_t + C*g_t +sqrt(ws)*rnorm(T));
plot(x, type="l", xlab = "Time index", ylab = "Price")
return(x)

}

tparm=c(0.353689, 9.154368, 2.074608, 7.166421,-0.434324, 0.035405,
0.000071, 530)

aa=lppl_simulate(500,tparm)

Detecting Bubbles and explosive behavior in bitcoin prices

Detecting Bubbles and explosive behavior in bitcoin prices

Sound familiar?

Detecting Bubbles and explosive behavior in bitcoin prices
2B) Testing for a multiple bubbles: the
Generalized-Supremum ADF test (GSADF).

Tests specifically designed for detecting multiple bubbles were
recently proposed by Phillips and Yu (2011), Phillips et al. (2011)
and Phillips et al. (2015) and they share the same idea of using
sequential tests with rolling estimation windows.

More specifically, these tests are based on sequential ADF-type
regressions using time windows of different size, and they can
consistently identify and date-stamp multiple bubble episodes even
in small sample sizes.

We will focus below on the Generalized-Supremum ADF test
(GSADF) proposed by Phillips, et al. (2015) -PSY henceforward-
which builds upon the work by Phillips and Yu (2011) and Phillips
et al. (2011), because it has better statistical properties in
detecting multiple bubble than the latter two tests.

Detecting Bubbles and explosive behavior in bitcoin prices
This test employs an ADF regression with a rolling sample, where
the starting point is given by the fraction r1 of the total number of
observations, the ending point by the fraction r2, while the window
size by rw = r2 − r1. The ADF regression is given by

yt = µ+ ρyt−1 +
p∑

i=1
φi

rw ∆yt−i + εt (10)

where the null hypothesis is of a unit root ρ = 1 versus an
alternative of a mildly explosive autoregressive coefficient ρ > 1.

The backward sup ADF test proposed by PSY (2015) fixes the
endpoint at r2 while the window size is expanded from an initial
fraction r0 to r2, so that the test statistic is given by:

BSADFr2(r0) = sup
r1∈[0,r2−r0]

ADF r2
r1 (11)

Detecting Bubbles and explosive behavior in bitcoin prices

The generalized sup ADF (GSADF) test is computed by repeatedly
performing the BSADF test for each r2 ∈ [r0, 1]:

GSADF (r0) = sup
r2∈[r0,1]

BSADFr2(r0) (12)

PSY (2015, Theorem 1) provides the limiting distribution of (12)
under the null of a random walk with asymptotically negligible drift
(vs an alternative of a mildly explosive process), while critical
values are obtained by numerical simulation.

If the null hypothesis of no bubbles is rejected, it is then possible
to date-stamp the starting and ending points of one (or more)
bubble(s) in a second step. . .

Detecting Bubbles and explosive behavior in bitcoin prices
More specifically,
→ the starting point is given by the date -denoted as Tre - when
the sequence of BSADF test statistics crosses the critical value
from below,

→ whereas the ending point -denoted as Trf - when the BSADF
sequence crosses the corresponding critical value from above:

r̂e = inf
r2∈[r0,1]

{
r2 : BSADFr2(r0) > cvβT

r2

}
(13)

r̂f = inf
r2∈[r̂e+δ log(T)/T ,1]

{
r2 : BSADFr2(r0) < cvβT

r2

}
(14)

where cvβTr2 is the 100(1− βT)% right-sided critical value of the
BSADF statistic based on bTr2c observations, b·c is the integer fun.

δ is a tuning parameter which determines the minimum duration
for a bubble and is usually set to 1, see PSY (2015) and references
therein, thus implying a minimum bubble-duration condition of
ln(T) observations.

Detecting Bubbles and explosive behavior in bitcoin prices
Malhotra and Maloo (2014) tested for the presence of multiple
bubbles using the GSADF test with data ranging from mid-2011
till February 2014:

⇒ they found evidence of explosive behaviour in the bitcoin-USD
exchange rates during August – October 2012 and November,
2013 – February, 2014 .

⇒ They suggested that the first episode of bubble behavior
(August – October 2012) could be attributed to the sudden
increase in media attention towards bitcoin,

⇒ whereas the second episode to a large set of reasons including
the US debt ceiling crisis, the shutdown of Silk Road by the FBI,
the rise of Chinese exchange BTC-China, and the increasing
number of warnings issued by regulatory authorities and central
banks worldwide following the shutdown of the Japanese exchange
Mt.Gox.

Detecting Bubbles and explosive behavior in bitcoin prices
Bitcoin price series with periods of explosive behaviour according
to the GSADF test highlighted in red, (a minimum bubble duration
of 30 days is used).

Chapter 9: Univariate volatility modelling

Univariate volatility modelling

These models can be by grouped into 2 families:

1. Generalized Autoregressive Heteroscedasticity (GARCH)

I GARCH models

I Asymmetric and Nonlinear GARCH models

I Fractionally Integrated Models

2. Realized Volatility models

I Realized Volatility

I Realized Volatility and Jumps

GARCH models

A generalization of the ARCH models was developed by Bollerslev
(1986) which allowed for a more flexible but parsimonious
specification.

A variance process σ2
t is called a GARCH(1,1) process, if

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1,

Sufficient conditions to ensure the positivity of σ2
t are ω > 0,

α1 ≥ 0 \ and β1 ≥ 0. �

GARCH models

Properties of the GARCH(1,1) Process

(i) ε2
t = ω + (α1 + β1)ε2

t−1 − β1νt−1 + νt with
νt ≡ ε2

t − σ2
t = σ2

t (z2
t − 1)

(ii) ε2
t is stationary if |α1 + β1| < 1.

(iii) σ2
ε = V [εt] = ω

1−α1−β1

(iv) ε2
t = σ2

ε + (α1 + β1)(ε2
t−1 − σ2

ε)− β1νt−1 + νt

(v) σ2
t = σ2

ε + α1(ε2
t−1 − σ2

ε) + β1(σ2
t−1 − σ2

ε)

(vi) Kε = E [ε4
t]

E [ε2
t]2 = 3(1−(α1+β1))

1−2α2
1−(α1+β1)2 = 6α2

1
1−2α2

1−(α1+β1)2 + 3 > 3
for zt ∼ iid N(0,1) and 2α2

1 + (α1 + β1)2 < 1.
(vii) σ2

t =
∑∞

i=1 β
i−1
1 ω + α1

∑∞
i=1 β

i−1
1 ε2

t−i if β1 < 1

GARCH models
Maximum Likelihood Estimation with Gaussian zt

Let assume the disturbance term εt to follow a GARCH(p,
q)-process. It is convenient to condition on the first
m = max(p, q) observations (t = −m + 1,−m + 2, . . . , 0) and to
use observations t = 1, 2, . . . ,T for estimation. With Gaussian zt ’s
the likelihood is given by

ln L(θ) = −T
2 ln(2π)− 1

2

T∑
t=1

lnσ2
t −

1
2

T∑
t=1

(Yt − X ′tγ)2

σ2
t

(15)

where we assume a general model of the type

Yt = X ′tγ + zt

√
σ2

t , zt ∼ N(0, 1)
σ2

t = ω + α∗p(L)ε2
t + β∗q(L)σ2

t

so that the parameter vector is θ = (γ, ω, α1, . . . , αp, β1, . . . , βq).
The maximization of log L(θ) cannot be done analytically like in
the homoscedastic case, since σ2

t is a function not only of
(ω, α1, . . . , αp, β1, . . . , βq), but also of γ through ε2

t−i and σ2
t−i .

GARCH models

I In the GARCH models positive and negative shocks have the
same effect on the conditional variances. In practice we
observe that the conditional volatility reacts differently to
positive and negative effects. This is known as the “leverage
effect". To circumvent this weakness nonlinear GARCH
models have been developed.

I To study the tail behavior (e.g. positive excess kurtosis) of εt ,
we have to ensure the existence of the fourth moment of εt .
The conditions therefore are very restrictive e.g. in the
ARCH(1) model α2

1 ∈ [0, 1
3).

I Often, one needs to model a high persistence of a past shock
(high p and q). ⇒ Fractionally integrated or integrated
GARCH models.

GARCH models

Exponential GARCH (EGARCH).

The exponential GARCH model (EGARCH) of order (1,1) is of the
form:

ln(σ2
t) = ω + φzt−1 + ψ (|zt−1| − E |zt−1|) + β ln(σ2

t−1)

where E |zt | = (2/π)1/2 when zt ∼ N(0, 1), where the parameters
ω, βi , αi are not restricted to be nonnegative.\

Let define
g(zt) ≡ φzt + ψ[|zt | − E |zt |]

by construction {g(zt)}t=∞
t=−∞ is a zero-mean, i.i.d. random

sequence.

GARCH models

Threshold GARCH (T-GARCH).

The threshold GARCH model for a GARCH(1,1) specification is of
the form:

σ2
t = ω + αε2

t−11[εt−1>0] + γε2
t−11[εt−1<0] + βσ2

t−1,

where 1[·] is the indicator function.

In the original specification by Glosten-Jagannathan-Runkle
(1993), it was formulated as

σ2
t = ω + αε2

t−1 + γε2
t−11[εt−1<0] + βσ2

t−1,

GARCH models
Power GARCH (a.k.a Asymetric Power ARCH - APARCH)

Ding, Granger and Engle’s power GARCH model for d > 0

σd
t = ω +

q∑
i=1

αi (|εt−i − γiεt−i |)δ +
p∑

i=1
βiσ

δ
t−j

where d > 0 and −1 < γi < 1 (i = 1, ..., q). A leverage effect is
present if γi < 0

d = 2 gives a regular GARCH model with leverage effects (i.e. a
TGARCH model)

d < 2 gives a model for σt and is more robust to outliers than
when d = 2

d can be fixed at a particular value or estimated by ML. Moreover
this specification includes several other ARCH models (see original
paper for details):

GARCH models An example with R
I deal with structural breaks in our bitcoin dataset by considering only
the last two years of the Coindesk bitcoin data (the dataset starts after
the famous bankruptcy of the MtGox exchange):
library(rugarch)
path.bit <- system.file("extdata","coindesk-bpi-USD-close.csv",package="bubble")
dat <- read.table(path.bit, dec = ".", sep =",", header = TRUE)
dat <- xts::xts(dat[,2], order.by=as.Date(dat[,1]))
dat<-dat['2014-04/']
bit.ret <- PerformanceAnalytics::CalculateReturns(dat, method="log")
bit.ret <- bit.ret[-1,]

Asymmetric GARCH models
EGARCH(1,1) model with Student-t errors
egarch11.spec <- ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)),distribution.model = "std")
bit.egarch11.fit <- ugarchfit(egarch11.spec, bit.ret)

GJR-GARCH(1,1) model with Student-t errors
gjrgarch11.spec<-ugarchspec(variance.model=list(model="gjrGARCH",garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)), distribution.model = "std")
bit.gjrgarch11.fit <- ugarchfit(gjrgarch11.spec, bit.ret)

#APARCH(1,1) model with Student-t errors
aparch11.spec <- ugarchspec(variance.model=list(model="apARCH",garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)),distribution.model = "std")
bit.aparch11.fit <- ugarchfit(aparch11.spec, bit.ret)

GARCH models An example with R
Fractionally Integrated GARCH models
FIGARCH(1,d,1) with Student-t errors
figarch11.spec<-ugarchspec(variance.model=list(model="fiGARCH",garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0)), distribution.model = "std")
bit.figarch11.fit <- ugarchfit(figarch11.spec, bit.ret)

A simple benchmark: GARCH(1,1) with Student-t errors
garch11t.spec = rugarch::ugarchspec(variance.model = list(garchOrder=c(1,1)),

mean.model = list(armaOrder=c(0,0)), distribution.model = "std")
bit.garch11t.fit = rugarch::ugarchfit(spec=garch11t.spec, data=bit.ret,

solver.control=list(trace = 1))

Compare information criteria
model.list = list(garch11 = bit.garch11t.fit,

egarch11 = bit.egarch11.fit,
gjrgarch11 = bit.gjrgarch11.fit,
aparch11 = bit.aparch11.fit,
figarch1d1 = bit.figarch11.fit)

info.mat = sapply(model.list, infocriteria)
rownames(info.mat) = rownames(infocriteria(bit.garch11.fit))
info.mat

garch11 egarch11 gjrgarch11 aparch11 figarch1d1
Akaike -4.405188 -4.408857 -4.402561 -4.402217 -4.404138
Bayes -4.374388 -4.371897 -4.365600 -4.359096 -4.367177
Shibata -4.405277 -4.408984 -4.402687 -4.402389 -4.404265
Hannan-Quinn -4.393320 -4.394616 -4.388319 -4.385602 -4.389896

Realized Volatility
To understand RV, we must introduce the concept of Integrated
Volatility. Suppose that the model for the variation of the price is a
diffusion process

dp(t)∗ = µ(t)dt + σ(t)dW (t) (16)
where p(t)∗ is the logarithm of instantaneous price, dW (t) is a standard
Brownian process, and σ(t) is a stochastic process independent of
dW (t).

For this diffusion process, the Integrated Volatility (IV) associated with
day t is defined as the integral of the instantaneous volatility over the
one day integral (t; t + 1):

IVt+1 =
∫ t+1

t
σ2(s)ds (17)

Merton (1980) showed that the IV of a Brownian motion (17) can be
approximated to an arbitrary precision using the sum of intraday squared
returns.

Daily squared returns, as a volatility measure, constitute a poor ex post
estimator, because they overestimate the volatility.

Realized Volatility

Integrated volatility is, instead, a good ex post measure and a theoretical
benchmark for other volatility estimations.

Andersen et al. (2001a,b, 2003) and Barndorff-Nielsen and Shephard
(2002) generalized this results to the class of special (finite mean)
semi-martingales by using the quadratic variation theory: this class
encompasses processes used in standard asset pricing applications, such
as Ito diffusions, jump processes, and mixed jump diffusions.

Under such conditions and as the maximal length of returns go to zero,
the sum of intraday squared returns converges to the integrated volatility
of the prices, allowing us, in principle, to build an error free estimate of
the actual volatility over a fixed-length time interval.

This nonparametric estimator is called Realized Volatility.

Realized Volatility
Barndorff-Nielsen and Shephard (2002) has demonstrated that the
quadratic variation of a semimartingale that is defined as

[yt] = plim
tj<t∑
j=1

(yt−j − ytj−1)2 (18)

is equivalent to the integrated volatility when returns move as described
in (16) and the drift element is continuous. The sum of successively
high-frequency squared returns converges to the quadratic variation of
price, (see Meddahi (2002) and Andersen et al. (2001a)).

The realized volatility is a consistent estimator of integrated volatility as
the sampling frequency increases.

Let consider a discretely sampled ∆-period return be denoted by
yt = p(t)− p(t −∆), and normalize the daily time interval to unity, so
that we can label the corresponding discretely sampled daily returns by a
single time subscript, yt+1 = yt+1,1·. Besides, we have a total of nt
subintervals within the day.

Realized Volatility
The daily realized volatility is given by the summation of the
corresponding 1/∆ high-frequency intraday squared returns,

RVt+1 =
1/∆∑
j=1

y2
t+j∆,∆ =

nt∑
i=1

y2
t,i (19)

As the sampling frequency from a diffusion is increased and even with a
non zero mean process, the realized volatility provides a consistent
measure of the integrated volatility over the fixed time interval (Andersen
et al. (2001a,b), Andersen et al. (2003, 2007)):

plim∆−→0 RVt+1 =
∫ t+1

t
σ2(s)ds (20)

Realized Volatility can be viewed over different time horizons longer than
a single day d : multi-period volatilities are normalized sums of the
one-period volatilities, that is a simple average of the daily quantity
RV (d) (Corsi, 2009). For example, a weekly realized volatility w at time t

RV (w)
t = (1w)−1

(
RV (d)

t−1d + RV (d)
t−2d + · · ·+ RV (d)

t−1w

)
(21)

where 1w = 5d indicate a time interval of one week , i.e. 5 working days.

Jumps

Recent studies have highlighted the importance of explicitly allowing for
jumps, or discontinuities, in the estimation of parametric stochastic
volatility models as well as in the pricing of options and other derivatives
instruments (e.g., Andersen et al. (2002), Chan and Maheu, (2002),
Chernov et al. (2003), Eraker et al. (2003), Maheu and McCurdy (2004),
Khalaf et al. (2003), Huang and Tauchen (2005)).

The empirical evidence points out that the conditional variance of many
assets is best described by a combination of a smooth and very slowly
mean-reverting continuous sample path process, along with a much less
persistent jump component, see, e.g., Andersen et al. (2007) and
Bollerslev et al. (2009).

In order to better understand this phenomenon, we briefly present the
basic bi-power variation theory of Barndorff-Nielsen and Shephard
(2004,2006).

Jumps
If we denote the time t logarithmic price of the asset with p(t)∗, the
continuous-time jump diffusion processes traditionally used in asset
pricing finance are expressed in the following stochastic differential
equation form,

dp(t)∗ = µ(t)dt + σ(t)dW (t) + k(t)dq(t) (22)

where µ(t) is a continuous and locally bounded variation process, the
stochastic volatility process σ(t) is strictly positive and c?gl?d1, W (t)
denotes a standard Brownian motion, q(t) is a counting process with
dq(t) = 1 corresponding to a jump at time t and dq(t) = 0 otherwise,
while k(t) refers to the size of the corresponding jumps.

The quadratic variation for the cumulative return process,
y(t) = p(t)− p(0), is given by (see Barndorff-Nielsen and Shephard
(2004,2006), Andersen et al. (2007)):

[y , y]t =
∫ t

0
σ2(s)ds +

∑
0<s≤t

k2(s) (23)

1i.e. right continuous and the limit exists. This assumption allows for
discrete jumps in the stochastic volatility process.

Jumps
The second term on the right-hand-side disappears when jumps are
absent, and the quadratic variation is then simply equal to the integrated
volatility.

In this more general framework, the RV of equation (19) converges
uniformly in probability to the increment to the quadratic variation
process defined above, as the sampling frequency of the returns
approaches infinity:

plim
∆−→0

RVt+1(∆) =
∫ t+1

t
σ2(s)ds +

∑
t<s≤t+1

k2(s) (24)

Thus, in the absence of jumps, the realized variation is consistent for the
integrated volatility.

However, in general, the realized volatility will inherit the dynamics of
both the continuous sample path process and the jump process.

Jumps

Making use of recent asymptotic results by Barndorff-Nielsen and
Shephard (2004, 2006) that allow for separate (non-parametric)
identification of the two components of the quadratic variation process,
we can thus define the standardized Realized Bipower Variation measure
as follows:

BVt+1(∆) = µ−2
1

1/∆∑
j=2
|yt+j∆,∆||yt+(j−1)∆,∆| = µ−2

1

nt∑
i=2
|yt,i ||yt,i−1| (25)

where µ1 =
√
2/π = E (|Z |) denotes the mean of the absolute value of

standard normally distributed random variable Z . Barndorff-Nielsen and
Shephard (2004, 2006) show that

plim
∆−→0

BVt+1(∆) =
∫ t+1

t
σ2(s)ds (26)

Jumps

Hence, combining the results in equations (26) and (24), the
contribution to the quadratic variation process due to the
discontinuities (jumps) in the underlying price process may be
consistently estimated by

plim
∆−→0

RVt+1(∆)− BVt+1(∆) =
∑

t<s≤t+1
k2(s) (27)

As nothing prevents the right hand-side of (27) from becoming
negative in a given sample, Barndorff-Nielsen and Shephard (2004)
suggest to impose a non-negativity truncation on the actual
empirical jump measurements,

Jt+1(∆) = max [RVt+1(∆)− BVt+1(∆), 0] (28)

Models for Forecasting Realized Volatility: HAR-RV
Corsi (2009) recently proposed a class of volatility models that seem to
successfully achieve the purpose of modelling the long memory behavior
of volatility in a very simple and parsimoniously way.

In order to describe the HAR-RV model, we have to use the multi-period
realized volatilities defined as the normalized sum of the one-period
volatilities, as we did in (21),

RVt,t+h = h−1[RVt+1 + RVt+2 + ...+ RVt+h]. (29)

Andersen et al. (2007) refer to these normalized volatility measures for
h = 5 and h = 22 as the weekly and monthly volatilities, respectively.
Moreover, by definition of the daily volatilities, RVt,t+1 = RVt+1.

The daily HAR-RV model of Corsi (2009) may be expressed as

RVt,t+1 = β0 + βDRVt + βWRVt−5,t + βMRVt−22,t + εt+1 (30)

Realized Volatility: an example with R
Download and aggregate data
library(highfrequency)
localbtcMXN <-bitcoincharts_single_download(name = "localbtcMXN.csv.gz")
btcdeEUR <-bitcoincharts_single_download(name = "btcdeEUR.csv.gz")
krakenEUR <-bitcoincharts_single_download(name = "krakenEUR.csv.gz")
localbtcINR <-bitcoincharts_single_download(name = "localbtcINR.csv.gz")
coinbaseUSD <-bitcoincharts_single_download(name = "coinbaseUSD.csv.gz")
data5<-list(localbtcMXN =localbtcMXN, btcdeEUR=btcdeEUR, krakenEUR=krakenEUR,

localbtcINR=localbtcINR, coinbaseUSD=coinbaseUSD)
data_merged<-aggregate_merge_bictoincharts_data(data_list=data5)

Realized Variance using 5 minutes sampling
rv <- rCov(rdata = data_clean$price_ts, align.by ="minutes", align.period =5,

makeReturns=TRUE);
head(rv,2)

aa
2011-09-13 23:55:00 4.042090e-03
2011-09-14 23:55:00 5.802934e-03

Realized Bipower Variation using 5 minutes sampling
rbpv = rBPCov(rdata = data_clean$price_ts, align.by ="minutes", align.period =5,

makeReturns=TRUE);
head(rbpv,2)

aa
2011-09-13 23:55:00 0.0001555618
2011-09-14 23:55:00 0.0004933023

Realized Volatility: an example with R
library(highfrequency)
setwd("C:/Users/Dean/Downloads")
data_clean=readRDS("data_clean.rds")
dat<-data_clean$price_ts
dat<- dat["2013-01-02/2017-07-12"]
dat_ret <- highfrequency::makeReturns(dat)
btc_harrv<- highfrequency::harModel(data=dat_ret,periods=c(1, 5, 22),

RVest = c("rCov"), type="HARRV",h=1,transform=NULL)
summary(btc_harrv)

Call: "RV1 = beta0 + beta1 * RV1 + beta2 * RV5 + beta3 * RV22"
Residuals:

Min 1Q Median 3Q Max
-0.20307 -0.00180 -0.00147 -0.00087 0.79924

Coefficients:
Estimate Std. Error t value Pr(>|t|)

beta0 0.001584 0.000687 2.305 0.02128 *
beta1 0.598949 0.025207 23.762 < 2e-16 ***
beta2 -0.014474 0.040409 -0.358 0.72026
beta3 0.135749 0.051953 2.613 0.00906 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02604 on 1627 degrees of freedom
Multiple R-squared: 0.3823, Adjusted R-squared: 0.3812
F-statistic: 335.7 on 3 and 1627 DF, p-value: < 2.2e-16

plot(btc_harrv)

Realized Volatility: an example with R

Chapter 10: Multivariate volatility modelling

Chapter 10: Multivariate volatility modelling

I Multivariate GARCH (MGARCH) models: VEC, BEKK, DCC

I Copula-GARCH models

I Realized Covariance models

DCC models
Engle (2002) proposes a model which is usually referred to as
DCCE (S, L) and is defined as:

Σt = DtRtDt (31)

where Dt is a diagonal matrix with std. deviations, and

Rt = (diagQt)−1/2Qt(diagQt)−1/2 (32)

where the N × N symmetric positive definite matrix Qt is given by:

Qt =
(
1−

L∑
l=1

αl −
S∑

s=1
βs

)
Q̄ +

L∑
l=1

αlut−lu′t−l +
S∑

s=1
βsQt−s (33)

where uit = εit/
√
σii,t , Q̄ is the n × n unconditional variance matrix of

ut , αl (≥ 0) and βs (≥ 0) are scalar parameters satisfying∑L
l=1 αl +

∑S
s=1 βs < 1, to have Qt > 0 and Rt > 0. Qt is the

covariance matrix of ut , since qii,t is not equal to 1 by construction.
Then, it is transformed into a correlation matrix by (32).

If θ1 = θ2 = 0 and q̄ii = 1 the CCC model is obtained.

Copula-GARCH models
It is possible to show that the CCC and DCC models can be represented
as special cases within a more general copula framework, see Patton
(2006a), Patton (2006b), Fantazzini (2008) and Fantazzini (2009c).

Particularly, the multivariate normal likelihood can be decomposed by
considering the joint normal density function as the product of a normal
copula with correlation matrix Σ = Rt together with normal marginals:

f normal (x1, . . . , xn) = cnormal (F normal
1 (x1), . . . , F normal

n (xn);Rt)·
n∏

i=1
f normal
i (xi)

(34)
where F normal

i is the normal cumulative density function.

If we consider a general model for the conditional means and variances,
the two models can be restated as follows:

Xt = E [Xt |Ft−1] + Dtzt

zt ∼ H(z1, . . . , zn) ≡ Cnormal (F normal
1 (z1), . . . ,F normal

n (zn);Rt)

where Dt = diag(σ11,t , . . . σnn,t), σ2
ii,t follows a univariate GARCH model

and the Sklar’s Theorem was used.

Copula-GARCH models
It is clear from the previous section that the copula approach enables us
to consider far more general cases than the normal CCC and DCC.

A multivariate model that allows for marginal skewness, kurtosis and
normal dependence can be expressed as follows:

Xt = E{Xt |Ft−1}+ Dtzt

zt ∼ H(z1, . . . , zn) ≡ Cnormal (F Skewed−t
1 (z1), . . . ,F Skewed−t

n (zn);Rt)

where F Skewed−t
i is the cumulative distribution function of the marginal

Skewed-t, and Rt can be made constant or time-varying, as in the
standard CCC and DCC models, respectively.

If the financial assets present symmetric tail dependence, we can use a
Student’s t copula, instead,

Xt = E{Xt |Ft−1}+ Dtzt

zt ∼ H(z1, . . . , zn) ≡ CStudent′s t(F Skewed−t
1 (z1), . . . ,F skewed−t

n (zn);Rt , ν)

where ν are the Student’s t copula degrees of freedom

Example with R
In case of large portfolios and dynamic copula models, it is better to
employ the rugarch and the rmgarch packages:
Example 3: rugarch and rmgarch packages
library(Quandl); library(TTR)
Download cryptocurrencies from Quandl
BTC <- Quandl::Quandl("BITFINEX/BTCUSD", type="xts",start_date="2016-03-14",

end_date="2017-07-02")
LTC <- Quandl::Quandl("BITFINEX/LTCUSD", type="xts",start_date="2016-03-14",

end_date="2017-07-02")
ETH <- Quandl::Quandl("BITFINEX/ETHUSD", type="xts",start_date="2016-03-14",

end_date="2017-07-02")
BTC <- BTC [, "Last", drop=F]
ETH <- ETH [, "Last", drop=F]
LTC <- LTC [, "Last", drop=F]
ETH.BTC.LTC = merge(ETH,BTC,LTC)
ETH.BTC.LTC = na.omit(ETH.BTC.LTC)
colnames(ETH.BTC.LTC) =c("ETH","BTC","LTC")
R <- TTR::ROC(ETH.BTC.LTC, na.pad = FALSE)

Model specification:VAR(2)-GARCH(1,1) with skewed marginals +
+ t-copula with DCC(1,1) for the correlation matrix
Marginal specification
uspec <- ugarchspec(variance.model=list(garchOrder=c(1,1),

model = "sGARCH"), distribution.model = "sstd")
copula specification
mspec <- cgarchspec(uspec = multispec(replicate(ncol(R), uspec)), VAR = TRUE,

robust=FALSE,lag=2,lag.max=NULL,lag.criterion=c("AIC","HQ","SC","FPE"),
external.regressors=NULL,robust.control=list("gamma"=0.25,"delta"=0.01,
"nc"= 10,"ns" = 500), dccOrder = c(1,1), asymmetric = FALSE,
distribution.model = list(copula = c("mvnorm", "mvt")[2],
method = c("Kendall", "ML")[2], time.varying = TRUE,
transformation = c("parametric", "empirical", "spd")[1]))

fit1 <- cgarchfit(mspec, data = R, fit.control = list(eval.se=TRUE))

Example with R
fit1

* Copula GARCH Fit *

Distribution : mvt
DCC Order : 1 1
Asymmetric : FALSE
No. of Parameters : 42
[VAR GARCH DCC UncQ]: [21+15+3+3]
No. of Series : 3
No. of Observations : 461
Log-Likelihood : 2886.76
Av.Log-Likelihood : 6.262
Optimal Parameters

Estimate Std. Error t value Pr(>|t|)
[ETH].omega 0.000258 0.000162 1.5897 0.111895
[ETH].alpha1 0.273238 0.107150 2.5500 0.010771
[ETH].beta1 0.725762 0.093477 7.7641 0.000000
[ETH].skew 1.276437 0.060990 20.9286 0.000000
[ETH].shape 3.665482 0.639309 5.7335 0.000000
[BTC].omega 0.000028 0.000017 1.5952 0.110678
[BTC].alpha1 0.177897 0.034455 5.1631 0.000000
[BTC].beta1 0.821103 0.048919 16.7849 0.000000
[BTC].skew 1.038374 0.041898 24.7831 0.000000
[BTC].shape 2.949946 0.253263 11.6478 0.000000
[LTC].omega 0.000066 0.000038 1.7297 0.083691
[LTC].alpha1 0.163358 0.047341 3.4507 0.000559
[LTC].beta1 0.835642 0.089694 9.3165 0.000000
[LTC].skew 1.277271 0.067492 18.9248 0.000000
[LTC].shape 2.680948 0.303606 8.8304 0.000000
[Joint]dcca1 0.061210 0.020727 2.9532 0.003145
[Joint]dccb1 0.896533 0.040142 22.3342 0.000000
[Joint]mshape 7.402293 1.572778 4.7065 0.000003

Example with R

Information Criteria

Akaike -12.446
Bayes -12.284
Shibata -12.449
Hannan-Quinn -12.382

If you need the parameters of the VAR(2) model for the conditional mean, type:
fit1@model$varcoef

ETH.l1 BTC.l1 LTC.l1 ETH.l2 BTC.l2 LTC.l2
ETH 0.1259141551 0.086756895 0.018058618 -0.009809315 0.07699290 -0.145510244
BTC -0.0008673604 -0.103929844 0.019590329 -0.018561690 -0.02332346 -0.008141854
LTC 0.0104835675 0.003802743 -0.005066713 -0.041902091 -0.05611200 0.016245733

const
0.006019725
0.004393645
0.005779316

Chapter 11: Market Risk Management

Chapter 11: Market Risk Management

I Risk Measures: VaR and Expected Shortfall

I Backtesting market risk measures

I Examples with univariate and multivariate volatility models

Risk Measures
If we define Ψ(∆Pt) the risk measure of ∆Pt , ADEH(1999) affirm that
Ψ(∆Pt) is a coherent risk measure if it has the following properties:

I Translation Invariance: given a random variable ∆Pt , the risk-free
title ∆G and a generic constant θG ∈ R, then

Ψ(∆Pt + θG ∆G) = Ψ(∆Pt)− θG (35)

I Sub-additivity: given two price variations (or returns) ∆Pt,1 and
∆Pt,2, it holds that

Ψ(∆Pt,1 + ∆Pt,2) ≤ Ψ(∆Pt,1) + Ψ(∆Pt,2) (36)

I Positive Homogeneity: given ∆Pt and a not negative constant λ,
then:

Ψ(λ∆Pt) = λΨ(∆Pt) (37)

I Monotonicity: given two price variations (or returns) ∆Pt,1 and
∆Pt,2, such that ∆Pt,1 ≤ ∆Pt,2 then

Ψ(∆Pt,2) ≤ Ψ(∆Pt,1) (38)

Risk Measures
The Expected Shortfall measures the average of the worst α results that
we can get from an investment, where α can be a percentage or, even
better, the percentile of the returns distribution.

Formally, The Expected Shortfall (ESα) is the simple arithmetic mean of
all the losses that we have with probability equal or smaller than α:

ESα = − 1
α

α∫
0

F−1(∆Pt)d∆Pt (39)

While the properties of translation invariance, positive homogeneity and
monotonicity follow easily from the properties of quantiles and the
previous definition, the subadditivity is more complicated to prove and we
refer to Acerbi and Tasche (2002) for more details.

→ The Value-at-Risk is not a coherent risk measure becasue it is not
always sub-addittive (except for ellyptical distributions).

Example with R
2) ====================== COPULA-VAR(2)-GARCH(1,1) ======================
==
Model specification: VAR-GARCH-SSTD and DCC(1,1)-t-copula
uspec = ugarchspec(mean.model = list(armaOrder = c(0,0)), variance.model =

list(garchOrder=c(1,1), model="sGARCH"), distribution.model="sstd")
spec1 = cgarchspec(uspec = multispec(replicate(m, uspec)), VAR = TRUE,

robust=FALSE, lag=2,lag.max= NULL,lag.criterion=c("AIC","HQ","SC","FPE"),
external.regressors = NULL, robust.control = list("gamma" = 0.25,
"delta"=0.01,"nc"=10,"ns"=500), dccOrder=c(1,1), asymmetric = FALSE,
distribution.model = list(copula = c("mvnorm", "mvt")[2],
method = c("Kendall", "ML")[2], time.varying = TRUE,
transformation = c("parametric", "empirical", "spd")[1]))

tic = Sys.time(); set.seed(123)
#Set up the parallel estimation
cl <- parallel::makePSOCKcluster(7)
parallel::clusterEvalQ(cl = cl, library(rmgarch))
parallel::clusterEvalQ(cl = cl, library(xts))
parallel::clusterExport(cl, varlist = c('R', 'w', 'spec1', 'n','backtest.length',

'v_alpha'), envir = environment())
mod = clusterApply(cl = cl, (n-backtest.length):(n-1), fun = function(i) {

fit1 = cgarchfit(spec1, data = R[1:i,], fit.control = list(eval.se=FALSE))
sim1 = cgarchsim(fit1, n.sim = 1, m.sim = 10000, startMethod = "sample",

only.density = TRUE)

Compute the realized and simulated weighted returns
realized<- as.numeric(R[i+1,] %*% w)
simx <- t(sapply(sim1@msim$simX, FUN = function(x) x[1,]))
simret<- simx %*% w
VaR.alpha <-quantile(simret, probs = v_alpha)
ES.alpha = mean(simret[simret <= VaR.alpha[5]])
ans = list(realized = realized, VaR.alpha = VaR.alpha, ES.alpha=ES.alpha)
return(ans)

})
stopCluster(cl)
toc = Sys.time()-tic
realized = VaR.alpha = ES.alpha= NULL
for (i in 1:length(mod)) {

realized = rbind(realized, mod[[i]]$realized)
VaR.alpha = rbind(VaR.alpha, mod[[i]]$VaR.alpha)
ES.alpha = rbind(ES.alpha, mod[[i]]$ES.alpha)

}

Example with R
====================== VaR BACKTESTING ====================
Compute VaR
m_VaR <-VaR.alpha
Test each VaR using UC and CC VaR tests
test_VaR_mat = NULL
for (i in 1: length(v_alpha)){

test_Var <- VaRTest(alpha=v_alpha[i], actual=realized, VaR=m_VaR[,i])
test_VaR_mat <- rbind(test_VaR_mat, cbind(test_Var$uc.LRp, test_Var$cc.LRp,

test_Var$actual.exceed))
}
colnames(test_VaR_mat)= c("UC pvalue", "CC pvalue", "Actual exceed.")
test_VaR_mat

UC pvalue CC pvalue Actual exceed.
[1,] 0.38190642 0.66060336 4
[2,] 0.21487449 0.40677691 8
[3,] 0.00654602 0.01459809 16
[4,] 0.01044855 0.01776247 19
[5,] 0.01382659 0.04828762 22

Compute the number of violations in each cell,
n_cell<-c(test_VaR_mat[,3], backtest.length) - c(0, test_VaR_mat[,3])
#and test all VaR jointly using the multinomial VaR backtest by Kratz et al.(2018)
theo_cell <- c(v_alpha, 1) - c(0, v_alpha)
XNomial::xmonte(n_cell, theo_cell, detail=2)

P value (LLR) = 0.12576 ± 0.001049
1e+05 random trials
Observed: 4 4 8 3 3 478
Expected Ratio: 0.005 0.005 0.005 0.005 0.005 0.975

====================== ES BACKTESTING ====================
es.multi = ES.alpha
Compute the Z2 test of eq. (11.15)
real <- realized
VaR2.5 <- m_VaR[,5]
2nd test by Acerbi and Szekely (2014)
Z2 <- sum((real/(-es.multi*length(es.multi)*es.alpha))

*(real < VaR2.5)) + 1
Z2

[1] -0.7027364
ES tests by Bayer and Dimitriadis (2018)
esback::esr_backtest(r = real, e = es.multi, alpha = 0.025, B=199)
Asymptotic Bootstrap
0.0769853 0.1356784

Chapter 12: Portfolio Management

Chapter 12: Portfolio Management

I A review of the classics: Markowitz mean-variance analysis

I Tail-based risk optimal portfolios: mean-VaR, mean-CVaR,
mean-CDaR

I Other risk-optimal portfolios: MAD, Minimax, LPM, Omega

I A simple portfolio diversification rule using online data

Mean-CDaR portfolios
The Conditional Drawdown-at-Risk (CDaR) was proposed by Pardalos et
al. (2004) and Chekhlov et al. (2005).

A portfolio’s drawdown at time t is the difference between the maximum
uncompounded portfolio value before time t and its current value at t:
for example, if the latest value of our portfolio is 20 million and the
maximum value of our portfolio in the past was 40 million, the absolute
drawdown would be 20 million, while the relative drawdown 50%.

This measure is of great importance in the portfolio management
industry: a large drawdown can force a client to withdraw his mandate
and the portfolio manager would lose his management fees. Formally
speaking, the drawdown function for a portfolio is given by:

D(w, t) = max
0≤τ≤t

{v(w, τ)} − v(w, t)

where v(w, t) is the uncompounded portfolio value at time t. As
Krokhmal et al. (2002) highlighted, the drawdown accounts not only for
the number of losses over a time interval but also for their sequence so
that the drawdown is a loss measure with memory.

Mean-CDaR portfolios
Using the drawdown function, we have three functional risk measures:

I Maximum drawdown: MaxDD(w) = max0≤t≤T{D(w, t)}
I Average drawdown: AveDD(w) = 1

T
∫ T

0 D(w, t)dt
I Conditional draw-down at risk at confidence level α: let ζα be the

threshold that is exceeded by (1− α)T drawdowns, and if (1− α)T
is an integer number, then

CDaR(w)α = 1
(1− α)T

∫
Ω
D(w, t)dt

where Ω = {t ∈ [0,T] : D(w, t) ≥ ζα}. Instead, if (1− α)T is not
an integer number, then CDaR is a linear combination of the
threshold and the drawdowns strictly exceeding this threshold,
similarly to what we saw with the CVaR for general distributions not
necessarily continuous:

CDaR(w)α = min
ζ

{
ζ + 1

(1− α)T

∫ T

0
[D(w, t)− ζ]+dt

}
where [a]+ = max(0, a). For example, the CDaR(w)0.95 can be
interpreted as the average of the 5% largest drawdowns.

Mean-CDaR portfolios
Note that the maximum drawdown is based on one worst case event that
took place in the examined time sample, which may not reflect the future
sample path: particularly, a very large maximum drawdown may force risk
managers to be far more conservative than needed.

Instead, the average drawdown considers all drawdowns, thus potentially
masking some large drawdowns. The CDaR measure solves most of these
problems but still assumes that the past financial history will be similar to
the future financial path.

Chekhlov et al. (2005) proposed a portfolio optimization which
maximizes the expected value of the uncompounded cumulative portfolio
rate of return at the final time moment T subject to a constraint on a
drawdown measure (AveDD, or MaxDD, or CDaRα) which should not be
larger than a proportion γ of the initial capital.

Chekhlov et al. (2005) also proved that drawdown risk measures satisfy
the properties of deviation measures, that is (1) nonnegativity, (2)
insensitivity to constant shift, (3) positive homogeneity, and (4) convexity.

An example with R:
The package FRAPO acconpanies the textbook by Pfaff (2016) and contains
several functions to compute constrained (long-only) maximum draw-down,
average draw-down, and conditional draw-down at risk portfolios, which are
described in details in section 12.5.2 in Pfaff (2016)
library(Quandl); library(TTR); library(FRAPO);
Download cryptocurrencies from Quandl
BTC <- Quandl::Quandl("BITFINEX/BTCUSD", type="xts",start_date="2016-03-14",

end_date="2017-07-02")
LTC <- Quandl::Quandl("BITFINEX/LTCUSD", type="xts",start_date="2016-03-14",

end_date="2017-07-02")
ETH <- Quandl::Quandl("BITFINEX/ETHUSD", type="xts",start_date="2016-03-14",

end_date="2017-07-02")
BTC <- BTC [, "Last", drop=F]
ETH <- ETH [, "Last", drop=F]
LTC <- LTC [, "Last", drop=F]
ETH.BTC.LTC = merge(ETH,BTC,LTC)
ETH.BTC.LTC = na.omit(ETH.BTC.LTC)
colnames(ETH.BTC.LTC) =c("ETH","BTC","LTC")

1) Portfolio optimization with maximum drawdown constraint:
the argument MaxDD sets the upper bound of the maximum drawdown(in % of the capital)
the argument softBudget allows the budget constraint to be a soft constraint,
i.e. the sum of the weights can be less than one
port_MaxDD<-PMaxDD(PriceData=coredata(ETH.BTC.LTC),MaxDD=0.3,softBudget=TRUE)
port_MaxDD
Optimal weights for portfolio of type:
maximum draw-down

ETH BTC LTC
0.0036 0.1910 0.0270
Interestingly, to satisfy the DD constraint we should not invest our full capital,
and this is true for all possible values of MaxDD

An example with R:

2) Portfolio optimization with average draw down constraint
the argument AveDD sets the upper bound of the average portfolio
drawdown (in %)
port_AveDD <- PAveDD(PriceData=coredata(ETH.BTC.LTC),AveDD=0.3,softBudget=F)
port_AveDD
Optimal weights for porfolio of type:
average draw-down

ETH BTC LTC
0.3097 0.6087 0.0816
No need of a softBudget here, unless the AveDD constraint is < 0.24

3) Portfolio optimization with CDaR constraint(95%). The argument alpha
specifies the confidence level, while 'bound' sets the upper bound of
the CDaR function
port_CDaR <- PCDaR(PriceData = coredata(ETH.BTC.LTC), alpha = 0.95,

bound = 0.3, softBudget = TRUE); port_CDaR;
Optimal weights for porfolio of type:
conditional draw-down at Risk

ETH BTC LTC
0.042 0.180 0.027

Also here, to satisfy the CDaR contraint, we should not invest our full
capital, and this is true for all possible values of `bound`

Chapter 13: Credit Risk Management

An introduction to classical credit risk management
The components of credit risk are defined as follows:

1. Probability of Default (PD), which can be examined
considering:

I the simple two events: (1) not insolvency and (2) insolvency
of the debtor. This is sometimes called pure default risk;

I the deterioration of the credit rating, that implies an increase
of the probability of default. This is also known as migration
risk, and the default risk is the last "absorbing" state

2. The Loss Given Default (LDG): when a default takes place
not the whole credit is necessarily lost, due to collateral or
guarantees that allow to recover at least part of the credit.

→ This brings us to the so-called Recovery Rate (RR) of the
obligor, which is the percentage which can be recovered in case of
insolvency, given by RR = 1− LGD.

An introduction to classical credit risk management
3. Exposure At Default (EAD): it represents the total amount of the

payment obligations of the obligor which would enter the bankruptcy
proceedings if a credit event occurred (default or migration). It is
evident that if we want to determine the EAD we have to consider
the the whole position subject to credit risk including:

I Loans
I Bonds
I Guarantees released to clients
I OTC Derivatives
I Credit Derivatives

4. Default dependence and/or migration dependence. The
measurement of such dependence is very complex: historical data
are few and even if large datasets were available, it would emerge
that simultaneous default simultaneous are very rare. Financial
research is still needed with this regard.

Credit risk management FOR cryptocurrencies
The MtGox bankruptcy showed that one of the main aspects of credit
risk management with cryptocurrencies: the default probability of the
online-exchange used to trade cryptocurrencies. Why?

If we employ the classical framework used for measuring credit risk, the
Exposure At Default (EAD) is easy to compute and is represented by the
amount deposited in the exchange (both FIAT and crypto-currencies)
which is fixed and certain.

⇒ The Loss Given Default (LGD) for crypto-exchanges is extremely high:
Moore et al. (2018) examined 80 Bitcoin exchanges established between
2010 and 2015, and found that 38 have since closed; of these 38,

I five fully refunded customers,
I five refunded customers only partially,
I six exchanges did not reimburse anything,
I while there is no information for the remaining 22 exchanges.

Credit risk management FOR cryptocurrencies
These numbers are rather staggering and show that closed
crypto-exchanges imply LGDs comparable to subordinated bonds if
not public shares, see Shimko (2004) for more details about
classical LGDs estimated using the Moody’s Default Risk Service
Database

⇒ A risk-averse investor (and credit risk manager) would definitely
not exaggerate if he/she set the LGD for closed crypto-exchanges
to 100%, that is a recovery rate of zero.

Given this discussion, the computation of the probability of
default/closure clearly becomes the key issue when measuring
credit risk with crypto-exchanges.

Only two papers who developed models for the default probability
of cryptoexchanges - Moore et al. (2013) and Moore et al. (2018):
the main reason is the difficulty in finding data of closed exchanges,
without which any proper empirical analysis is not viable.

Credit risk management FOR cryptocurrencies
Summarizing Moore et al. (2013), they find that
I a high transaction volume decreases the exchange probability of

default,
I while a security breach increases this probability but this latter

effect is not statistically significant.
I The anti-money laundering indicator shows no correlation with the

hazard rate.

Instead, a separate logistic regression shows that
I transaction volume increases the probability of a security break,
I whereas the number of months the exchange was open has no

significant effect.

However, be careful of these results because,
I the number of regressors is small and a large part of the model

randomness cannot be explained.
I the dataset is rather small and some regressors like the long-term

average of the transaction volume may need to be changed

Credit risk management FOR cryptocurrencies
Moore et al. (2018) extended the work by Moore et al. (2013) considering
transactions between 2010 and March 2015 and up to 80 exchanges.

They built quarterly indicators and estimated a panel logit model with an
expanded set of explanatory variables.

Some previous results confirmed + some interesting new findings:

I a security breach increase 13.5 times the odds that the exchange
will close that same quarter,

I while doubling of the daily transaction volume determines a 12%
decrease in the odds that the exchange will shut down that quarter.

I New finding: exchanges who get most of their transaction volume
from fiat currencies which are traded by few other exchanges
(mono- or duopoly currencies) are 91% less likely to close than
other exchanges who trade fiat currencies with higher competition.

I A time trend is significant and decreases the probability of closure,
I The anti-money laundering indicator and 2-factor authentication not

significant

Given this evidence, where do we go from here?
The amazing growth of crypto-exchanges in the last years cannot
hide the fact that these busi nesses mostly belong to the large
family known as Small and Medium-sized Enterprises (SMEs), and
which represents the vast majority of businesses in most countries.

There is no a unique definition of SME worldwide, and each
country has its own legal definition which depends on the number
of employees, annual sales, assets, business sector, or any
combination of these, see
en.wikipedia.org/wiki/Small_and_medium-sized_enterprises
for a quick review.

As anybody who has dealt with credit risk management for SMEs,
modelling and forecasting the PD of SMEs is very difficult. There
are two main reasons:
I lack of data
I poor financial reporting.

Given this evidence, where do we go from here?

I Forecasting the PD of exchanges: Expert and credit rating
systems

I Forecasting the PD of exchanges: Credit Scoring Systems

I Forecasting the PD of exchanges: Classical and Bayesian
Panel Models

I Forecasting the PD of exchanges: Machine learning

I Forecasting the PD of quoted exchanges: Merton’s Model

I Forecasting the PD of quoted exchanges: the ZPP

I Forecasting the probability of death of coins with the ZPP

I Model Evaluation: ROC, AUC and Loss Functions

Conclusions: challenges ahead

Conclusions: challenges ahead

I Short-term challenges: energy consumption and max of daily
number of transactions

I Medium and long-term challenges: quantum computing

	How the book is structured?
	Chapter 1: (Very brief) introduction to Bitcoin and other Cripto-currencies
	Chapter 2: Where to get (free) Bitcoin and cryptocurrency data?
	Chapter 3: Liquidity measures
	Chapter 4: What is bitcoin fundamental value? A review of financial and economic approaches
	Chapter 5: Bitcoin Market Price Discovery
	Chapter 6: Univariate time series models
	Chapter 7: Multivariate time series models
	Chapter 8: Testing for financial bubbles and explosive price behavior
	Chapter 9: Univariate volatility modelling
	Chapter 10: Multivariate volatility modelling
	Chapter 11: Market Risk Management
	Chapter 12: Portfolio Management
	Chapter 13: Credit Risk Management
	Conclusions: challenges ahead

