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Financial and economic networks  



Is it possible to deliver a message to a stock dealer in Boston  

starting from randomly extracted people in Nebraska and Kansas? 

Milgram’s 1967 “small world” experiment 
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The small world effect:  

the Milgram’s experiment (1967-1969) 
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1. Starting points of the chain of correspondence: Omaha, Nebraska and Wichita, Kansas. End 

point of the chain of correspondence: Boston, Massachusetts. 

 

1. Information packets were initially sent to "randomly" selected individuals in Omaha or 

Wichita. They included letters, which detailed the study's purpose, and basic information about 

a target contact person in Boston. It additionally contained a roster on which they could write 

their own name, as well as business reply cards that were pre-addressed to Harvard. 

 

1. Upon receiving the invitation to participate, the recipient was asked whether he or she personally 

knew the contact person described in the letter. If so, the person was to forward the letter directly 

to that person.  

 

2. In the more likely case that the person did not personally know the target, then the person was to 

think of a friend or relative they know personally that is more likely to know the target. 

They were then directed to sign their name on the roster and forward the packet to that person. A 

postcard was also mailed to the researchers at Harvard so that they could track the chain's 

progression toward the target. 

 

1. When and if the package eventually reached the contact person in Boston, the researchers 

could examine the roster to count the number of times it had been forwarded from person to 

person. Additionally, for packages that never reached the destination, the incoming postcards 

helped identify the break point in the chain. 



On average, less 

than Six steps !!!! 
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Six degrees of separation 
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Robust Action and the Rise 

of the Medici, 1400-1434 

American Journal of Sociology 

Network studies have been 

an area of research in  

Social Sciences since 

the fifties of the last 

century 
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Erdös-Rényi model (1959-1961) 

Perm Winter School 2016 
d 

Mathematicians have modeled networks since 1950s. One 

prominent model of a class of networks is the random network 
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Erdös-Rényi model (1959-1961) 



Feb 4th, 2016 Perm Winter School 2016 8 

Why networks become so interesting at the end of the 1990s? 

How big is the 

World Wide Web? 

Tim Berners-Lee  Sir  
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The WWW is a dynamic  

entity in continuous  

development. Tim  

Berners-Lee and collaborators 

have proposed to consider it  

as an object of scientific  

study developing a  

"web science". 

James Hendler, Nigel Shadbolt, Wendy Hall,  

Tim Berners-Lee, and Daniel Weitzner. 

Web science: An interdisciplinary approach  

to understanding the Web. Communications 

of the ACM, 51(7):60-69, 2008. 
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From WWW 

to Social 

Networks 
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Networks were and are investigated in several different disciplines. 

It is therefore a genuinely multidisciplinary research topic.   

Networks are investigated in 

 

Social sciences 

Mathematics 

Computer science 

Statistical physics 

Economics 

Biology 

Physiology 
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Types of networks 

In its more general definition a network is "a collection 

of interconnected things" (Oxford English Dictionary). 

In network modeling and network science "network" is 

often interchanged with the term "graph". 

Newman, Mark EJ. "The structure and function of complex networks." SIAM review 45, 

 no. 2 (2003): 167-256. 
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A graph G=(V , E) is a mathematical object consisting of a set 

V of vertices (also called nodes) and a set E of edges (also 

called links).   

Edges are defined in terms of unordered pairs {u,v} of distinct 

vertices u,v belonging to the set V. 

The number of vertices Nv is sometimes called the order of the graph  

The number of edges NE is sometimes called the size of the graph  
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A graph H=(VH,EH) is a subgraph of G=(VG,EG) if 

                and  VH Í VG EH Í EG

A graph H'=(VH',EH') is an induced subgraph of G'=(VG',EG') if 

                is a pre-specified set of vertices and                   are 

the edges observed among them    

VH ' Í VG' EH ' Í EG'
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A graph where the relationship between vertex u and vertex v 

presents a directionality is called a directed graph or digraph. 

Directed graphs have directed edges also called arcs  

In a directed graph the direct edge {u,v} is therefore different 

for {v,u}. Conventionally, the formalism {u,v} reads tail u to  

head v    
u v 

v u 

{u,v} 

{v,u} 

When we observe more than one type of directed edge between 

two vertices we are in the presence of a multi-digraphs   

Note that in a simple digraph we might have up to 2 directed 

edges between two vertices. When both are present we say that 

the two arcs are mutual.  
u v 
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Two vertices                are adjacent if joined by an edge in E u,v Î V

Two edges                  are adjacent if connected by a vertex in V e1,e2 Î E

The degree of a vertex is the number of incident edges on it 

The degree sequence is obtained 

by arranging the degree of  

vertices in non-decreasing order 

{1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,6} 

{10,32,37,45,47,60,76,12,29,67,69, 

   77,79,20,87,19,75,44,15} 
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In a digraph we have in-degree and out-degree 

In the present example, the in-degree  

sequence is 

{0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,3,3,4,6} 

{10,12,20,29,32,44,45,47,60,67,69, 

   37,76,79,77,19,87,75,15} 

The out-degree sequence is 

{0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3,5} 

{15,37,75,76,77,87,10,19,32,45,47, 

   60,79,12,29,67,69,20,44} 
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A vertex v is reachable from a  

vertex u if there exists at least  

a walk connecting u to v  

A graph G is said to be  

connected if every vertex  

is reachable for every  

other one 
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A component of a graph is a  

maximally connected subgraph 

The component with the largest 

number of vertices is called 

the largest connected component 

lcc 
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In the case of digraphs the concept of connectedness is  

specialized in two cases. 

A digraph is weakly connected if the underlying undirected  

graph is connected  

A digraph is strongly connected if every vertex v is  

reachable by every vertex u through a directed walk 
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A widely used notion of distance between two vertices of a graph is 

defined as the length of the shortest path(s) between the two vertices 

Number of nodes 19 

 

Average path length 

3.053 

 

Diameter 7  

(see the paths from 

60 to 76) 

The diameter of a network is the maximum length of 

shortest paths 
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When an edge of a graph has associated a numerical weight  

the graph is called a weighted graph.   

When edges are weighted the length of a walk (trail, path, etc) 

is defined as the sum of the values of the edges composing the  

walk. The distance is always defined as the weighted length of  

the shortest path.  

The notion of degree is generalized to take into account 

the weights of the edges. The generalization is called the 

strength of the vertex and it is the sum of the weights of all 

incident edges.    
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Some reference graphs 

A complete graph is a graph where  

every vertex is linked to every  

other vertex. 

A complete subgraph is called  

a clique 

A d-regular graph is a graph where 

all vertices have degree d 
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A connected graph with no cycles 

is called a tree 
The disjoint union of trees is 

called a forest 
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A digraph whose underlying graph is a tree is called a directed 

tree 

Directed tree may show  

a root, i.e. a unique vertex 

from which there is a directed  

path to any other vertex of 

the graph.  

When a root is present in a  

directed tree the tree is called 

a rooted tree 

root 

parent 

children 

leaf 

descendants 

ancestors 
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A bipartite graph is a graph where the set  

of vertices can be partitioned in two disjoint 

sets and edges are present only between a 

pair of vertices of different nature (for  

example, actors and movies, genes and 

organisms, students and courses, etc) 

Bipartite graphs 
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From a bipartite graph it is quite common to extract projected graphs. 
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A classic example is the bipartite network 

of Movies and Actors 

An example is the set of all world movies produced during the period  

1990-2008 which are present in the International Movie Data Base.  

This set of data comprised 89605 movies realized in 158 countries. 

412,143 different actors played in these movies. 

Actors 

Movies 
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Kevin Bacon 

One typical characteristic of complex systems and complex 

network is to be heterogeneous 
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An example of a very small cluster  

of the large projected 

network of US  

movies 
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Planar graphs 

A graph is planar if its edges can be embedded on a surface of  

genus 0, i.e. a surface like a plane or a sphere, without intersections 

of the edges. 
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Example: the network of highways in U.S. 

Planar graphs are naturally observed in the presence of 

geographical constraints 

The network of navigation points of the German airspace 

during different time interval of the day  
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1 2 3 4 5 6 7 8 9 

1 0 1 1 0 1 0 0 0 0 

2 1 0 0 1 0 1 0 0 0 

3 1 0 0 1 1 0 0 0 0 

4 0 1 1 0 1 1 1 0 0 

5 1 0 1 1 0 0 1 0 0 

6 0 1 0 1 0 0 1 1 0 

7 0 0 0 1 1 1 0 1 1 

8 0 0 0 0 0 1 1 0 1 

9 0 0 0 0 0 0 1 1 0 

Adjacency matrix Aij 

Aij =
1, if  i, j{ } Î E,

0 otherwise,

ì

í
ï

îï

3 

3 

3 

5 

4 

4 

5 

3 

2 

degree 



Feb 4th, 2016 Perm Winter School 2016 34 

1 2 3 4 5 6 7 8 9 

1 0 1 1 0 1 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 

3 0 0 0 1 0 0 0 0 0 

4 0 1 0 0 0 1 1 0 0 

5 1 0 1 1 0 0 1 0 0 

6 0 1 0 0 0 0 1 1 0 

7 0 0 0 1 0 0 0 1 1 

8 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 0 

For digraphs the matrix Aij 

is not symmetric 

Aij =
1, if  i, j{ } Î E,

0 otherwise,

ì

í
ï

îï

3 

1 

1 

3 

4 

3 

3 

1 

0 

out-degree 

1 3 2 3 1 2 3 2 2 

in-degree 
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1 2 3 4 5 6 7 8 9 

1 0 1 1 0 1 0 0 0 0 

2 1 0 0 1 0 1 0 0 0 

3 1 0 0 1 1 0 0 0 0 

4 0 1 1 0 1 1 1 0 0 

5 1 0 1 1 0 0 1 0 0 

6 0 1 0 1 0 0 1 1 0 

7 0 0 0 1 1 1 0 1 1 

8 0 0 0 0 0 1 1 0 1 

9 0 0 0 0 0 0 1 1 0 

Other properties of the adjacency  

matrix Aij 

The r-th power of Aij has elements Ar
ij providing the number 

of walks of length r between vertices i and j  
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1 2 3 4 5 6 7 8 9 

1 0 1 1 0 1 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 

3 0 0 0 1 0 0 0 0 0 

4 0 1 0 0 0 1 1 0 0 

5 1 0 1 1 0 0 1 0 0 

6 0 1 0 0 0 0 1 1 0 

7 0 0 0 1 0 0 0 1 1 

8 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 0 

Data structures for a graph 

Aij 

1 2 

1 3 

1 5 

2 6 

3 4 

4 2 

4 6 

5 3 

5 4 

5 7 

4 7 

6 7 

7 8 

7 9 

6 8 

8 9 

5 1 

6 2 

7 4 

Edge list 

O NV

2( ) O Nv + NE( )



Another vertex centrality measure: the vertex betweenness 
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The vertex betweenness is a centrality measure defined as 

s 

t 

CB(v) =
s st v( )

s sts¹t¹v

å

where σst is the total number of shortest paths from node s to node t  

and σst(v) is the number of those paths that pass through v. 



The edge betweenness 
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The edge betweenness is defined as: 

s 

t 

CB(e) =
s st e( )

s sts¹t¹v

å

where σst is the total number of shortest paths from node s to node t  

and σst(e) is the number of those paths that pass through edge e. 
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Centrality betweenness: 

 

Marriage relations: 

Medici CB=0.362 

Other oligarch CB=0.184 

 

Economic ties (including 

personal loans): 

Medici CB=0.429 

Other oligarch CB=0.198 

 



Local clustering coefficient 
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Ci =
2 ejk{ }

ki ki -1( )

   

ejk{ } is the number of edges observed between  

pairs of vertices jk, ... linked to i 

is the degree of vertex i 

   

ki

Other network indicators 



Global clustering coefficient 
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Connected triple Triangle 

A triangle  

contains  

3 triples 

C =
   3´  total number of triangles     

total number of connected triples

Other indicators characterizing a graph 

Fraction of path of 

length 2 in the network 

that are close 
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Models of graphs: Erdös-Rényi 

model (1960): Random network 

Connect with 

probability p 

p=1/6 n=10 

 <d>=z= 

p(n-1) ~ 1.7 

Poisson distribution 

for large n and z=cost 

Perm Winter School 2016 

The tail of the degree  

distribution is  

decaying quickly 

P d( ) =
n

d

æ

è
ç

ö

ø
÷ pd(1- p)n-d @

z( )
d
e-z

d!
d 

P
(d

) 
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What is happening as a function of the average degree? 

<d>=0.6 
LCC 6 

<d>=0.7 
LCC 3 

<d>=0.8 
LCC 8 

<d>=0.9 
LCC 9 

<d>=1.0 
LCC 8 

<d>=1.1 
LCC 6 

<d>=1.2 
LCC 6 

<d>=1.3 
LCC 8 

<d>=1.4 
LCC 8 

<d>=1.5 
LCC 13 

Nv=20 
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What is happening as a function of the average degree for large 

networks? 

<d>=0.6 
LCC 8 

<d>=0.7 
LCC 8 

<d>=0.8 
LCC 5 

<d>=0.9 
LCC 7 

<d>=1.0 
LCC 8 

<d>=1.1 
LCC 12 

<d>=1.2 
LCC 18 

<d>=1.3 
LCC 13 

<d>=1.4 
LCC 27 

<d>=1.5 
LCC 22 

Nv=40 
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In fact for an Erdős-Rényi network we observe  

Newman, Mark EJ. "The structure and function of complex networks." SIAM review 45, 

 no. 2 (2003): 167-256. 

d 
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Small world and weak links 
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Watts-Strogatz model 

C(p) : average clustering coeff.          

L(p) : average path length 

C(0) and L(0) refer to the 

regular lattice 

Perm Winter School 2016 

Regular 

Random 

Regular Random Small-world 

Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of ‘small-world’networks."  

nature 393, no. 6684 (1998): 440-442. 
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Networks are clustered [large C] but have a small 

characteristic path length  [small L]. 

Network C Crand L N

WWW 0.1078 0.00023 3.1 153127

Internet 0.18-0.3 0.001 3.7-3.76
3015-

6209

Actor 0.79 0.00027 3.65 225226

Coauthorship 0.43 0.00018 5.9 52909

Metabolic 0.32 0.026 2.9 282

Foodweb 0.22 0.06 2.43 134

C. elegance 0.28 0.05 2.65 282

Perm Winter School 2016 



Degree distribution of several real networks 
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Barabási, Albert-László, and Réka Albert. "Emergence of scaling in random networks." Science 286,  

no. 5439 (1999): 509-512. 

WWW Actors Power 

grid 

γ=2.3 γ=2.1 γ=4 



Feb 4th, 2016 51 

Degree distribution 

Poisson distribution 

Poisson Network 

Power-law distribution 

Scale-free Network 
Perm Winter School 2016 



Barabási and Albert (1999) 

The probability that any node on the network is highly 

connected to many others is very low. 

 

The probability that a very large number of nodes are 

connected loosely or not at all is very high. 

 

Scale free networks are sparse networks 

Complex networks are typically sparse networks 
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The Barabási-Albert  model of 

preferential attachment 
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At each time step a new vertex is added to the network.  

 

The new vertex forms m connections with existing vertices.  

 

The probability that a new edge attaches to a vertex with 

degree d is 

 

 

 

 

where 2m is the mean degree of the network. 

dp(d)

2 × m

Barabási, Albert-László, and Réka Albert. "Emergence of scaling in random networks." Science 286,  

no. 5439 (1999): 509-512. 
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One can write a master equation describing the dynamics of pn(d),  

which is the degree distribution when the network has n vertices  

n+1( ) pn+1 d( ) - npn d( ) =

1

2
d -1( ) pn d -1( ) -

1

2
dpn d( )

1-
1

2
mpn m( )

ì

í

ï
ï

î

ï
ï

for d > m

for d = m

where the mean number of vertices of degree d that gain an 

edge when a single vertex with m edges is added is 

m´
dp d( )

2m
=

1

2
dp d( )

Looking for stationary solutions 

pn+1 d( ) = pn d( ) = p d( )
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Under the stationary assumption the above master equation implies  

p d( ) =

1

2
d -1( ) p d -1( ) -

1

2
dp d( )

1-
1

2
mp m( )

ì

í

ï
ï

î

ï
ï

for d > m

for d = m

By solving this equations recursively we have 

p m( ) =
2

m+ 2
p d( ) = p d -1( )

k-1

k+ 2

Which are equivalent to 

p d( ) =
d-1( ) d - 2( )… m+1( )m

d+ 2( ) d+1( )d… m+3( )
p m( ) =

2m m+1( )
d + 2( ) d+1( )d

@
2m m+1( )

d3



2m m+1( )
d + 2( ) d +1( )d

A numerical simulation of the model 
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Degree and age of 

nodes are correlated 

Younger nodes have  

smaller degree 

d 

p
(d

) 
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In network theory the most basic model of a random graph  

presenting a given degree distribution is the configuration  

model. 

It should be realized that the configuration model does not 

fully characterize a network but only describes the most basic 

characteristics of it. In fact, different networks characterized by  

quite different local structures can be characterized by the  

same configuration model.  

A scientific question widely investigated has been: By assuming  

a given configuration model, when is a giant component observed  

to be present in the considered network?  
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A heuristic argument describing quite well the setting of a giant 

component¶ 

¶Cohen, Reuven, Keren Erez, Daniel Ben-Avraham, and Shlomo Havlin. "Resilience of the Internet to  

random breakdowns." Physical review letters 85, no. 21 (2000): 4626. 

A giant component does not set up in the system until a negligible 

number of cycles (closed paths) are observed in the network. Therefore, 

when the giant component is not yet formed, the paths observed in the 

network are indistinguishable from paths observed on trees. 

Emergence of a giant component in a network described 

by a given configuration model 
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The argument of Cohen et al is as follows: Let us estimate the  

probability that 2 occupied nodes are connected in a component  

with s nodes. This probability is proportional to s

n

æ

è
ç

ö

ø
÷

2

Therefore the fraction of links that are belonging to cycles  

is of the order of si

n

æ

è
ç

ö

ø
÷

2

i

å

We can write the inequality  
si

n

æ

è
ç

ö

ø
÷

2

i

å £
siS

n2

i

å

where S is the size of the giant component. 

Since 
The fraction of links that lie on  

cycles is of the order of no more  

than S/n 

si

i

å = n

Where si is the size of the component i in the network 

¶Cohen, R., K. Erez, D. Ben-Avraham, and S. Havlin. "Resilience of the Internet to random breakdowns."  

Physical review letters 85, no. 21 (2000): 4626.  
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Let ϕ be the number of nodes that can be reached in the network 

by selecting randomly a link and then one node of the link and  

exploring all nodes reachable from this node   

By assuming that the giant component is still not present, 

i.e. the number of cycles is negligible  

f =1+
P d( )d

d
d=1

¥

å d -1( )f

limit number of 

nodes reached from one 

selected 

Distribution of degree 

of  node found selecting 

a link at random and  

selecting one of the nodes 
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The previous equation states that: f =1+
d2 - dé

ë
ù
ûf

d

or f =
1

2 - d2 / d

The quantity ϕ is finite and positive when 

2 -
d2

d
> 0 which means d2 - 2 d < 0

The giant component will set in when the above condition is 

not verified 
d2 - 2 d > 0

Therefore a good approximation for the threshold setting the  

presence of a giant component is 

d2 = 2 d
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Let us examine some popular models of network 

a) Poisson degree distribution (Erdős-Rényi model)  

P d( ) »
np( )

d
e-np

d!
with 

d2 = d + d
2

Therefore the condition for the onset of a giant components 

is 

d2 - 2 d = d + d
2

- 2 d > 0

or 

d >1
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In fact for an Erdős-Rényi network we observe  

Newman, Mark EJ. "The structure and function of complex networks." SIAM review 45, 

 no. 2 (2003): 167-256. 

d 
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b) Scale free networks (Example: Barabási-Albert model)  

P d( ) = cd-g with g = 3

d2

Therefore there is a giant component regardless of the  

details of the distribution 

diverges 
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By defining λ=ν/δ where ν is the transmission rate of the 

"infection" and δ is the "recovery rate".  

Let us consider the problem of the diffusion of something  

(an innovation, a rumor, a disease, etc) on a network  

The by assuming a Susceptible, Infected, Susceptible  

model one can estimate the role of the topology of the network 

in network diffusion. 
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r » q =
1

l e1/l -1( )

Under the assumptions of the model and some simplifying  

assumption the result obtained for the spreading of the "epidemics" 

for different network topologies is 

Pastor-Satorras, Romualdo, and Alessandro Vespignani. "Epidemic dynamics and endemic states in complex  

networks." Physical Review E 63.6 (2001): 066117. 
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Networked markets in economics: Empirical  

evidence of the role of social networks in the  

labor market 

In an early study of the textile industry Myers and Shultz (1951)  

shown that 62% of interviewed workers found their job through  

a social contact, 23% by direct application, and 15% through an  

employment agency, advertisement or other means.  

Similar results were obtained by Rees and Shultz (1970) and by  

Granovetter (1995). 

Summarizing the results of 24 studies, Truman Bewley (1999) 

estimated that 30 to 60 percent of jobs were found through  

friends or relatives.  
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From: Ioannides, Y. M.,  

and L. Datcher Loury. "Job  

information networks,  

neighborhood effects, and  

inequality." Journal of  

economic literature (2004):  

1056-1093. 

The Panel Study  

of Income  

Dynamics - PSID  

- is the longest  

running  

longitudinal  

household survey  

in the world.  
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Strong and weak ties 

Granovetter's work has been extremely influential in this area 

of research. 

Granovetter obtained a proxy of the strength of a ties by  

considering the number of times that the two social actors 

have interacted during a year (strong= at least twice a week, 

medium= less than twice a week but more than once a year,  

and weak=once a year or less).   

In his pioneering study, of the 54 people who found job through  

a social contact, 16.7% found their job through a strong tie, 

55.6% through a medium tie and 27.8% through a weak one. 
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A stylized time dependent labor market model:  

Calvò-Armengol and Jackson 

In the basic setting the model presents the following characteristics: 

 

- job information arrives directly or through neighbors; 

- information about new job opening arrives randomly to the agents 

  of the network; 

- if the worker is unemployed she takes the job; 

- if the worker is employed she select randomly an unemployed  

  neighbor and transfer the information; 

- there is only one type of link (no difference between strong and 

  weak ties).   

The system operates over time and final state at time t-1 is the  

starting state at the beginning of the next period 

Calvo-Armengol, Antoni, and Matthew O. Jackson. "The effects of social networks on employment  

and inequality." American economic review (2004): 426-454. 
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The model therefore allows tracking the time dynamics of 

unemployment in the system. One can therefore deduce  

long-run steady state distribution of employment and the role 

of network structure in it. It can also be able to model  

the empirical observation of the duration dependence  

(i.e. the fact that workers who have been unemployed for  

longer times are less likely to find a work than workers who are  

just recently unemployed). 
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Model description: 

- all jobs are identical and there is a single wage level;  

- n agents are connected by an undirected network represented 

 by a n x n symmetric adjacency matrix g which has entries 0 and 1.  

- time evolves in discrete periods indexed by t=1,2, ... ,   

- the n-dimensional vector st describes the employment 

  status of agents at time t. At the end of the t period sit=1 

  indicates employment and sit=0 unemployment of agent i.  

- each agent directly hears about a job with probability  
a Î 0,1[ ]

- the arrival of job information is independent across agents. 

  When agent i receives job information and is unemployed he or she  

  becomes employed. If he or she is already employed he or she  

  passes the information to a random unemployed agent (if present). 



Feb 4th, 2016 Perm Winter School 2016 75 

The probability that agent i learns about a job and this job 

is taken by agent j is 

pij st-1( ) =

a

a

gikk:sk,t-1=0
å

0

if si,t-1 = 0 and i=j

if si,t-1 =1 , sj ,t-1 = 0,  and gij =1

otherwise

ì

í

ï
ï
ï

î

ï
ï
ï

At the end of the period some agents lose their jobs with 

probability 

b Î 0,1[ ]



Feb 4th, 2016 Perm Winter School 2016 76 

Long run steady state probability 

a) Isolated agent 

Let us indicates the long run steady state probability of an agent 

to be employed as μ 

For the isolated agent 

m = 1-b( ) m + a 1- m( )( )
where (1-b)μ is the probability of being employed and not 

 loosing the job and a(1-b)(1-μ) is the probability of being 

unemployed, getting a job and not loosing it. 

Therefore m =
1

1+
b

1- b( )a
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The case of a dyad 

The steady state distribution can be obtained in terms of the  

probabilities μ0, μ1 and μ2. Where μ0 is the probability that no  

agent of the dyad is employed, μ1 is the probability that one agent  

of the dyad is employed and μ2 is the probability that both agents  

are employed.  

The relations among these variables are given by the following 

equations 

m0

m1

m2

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

=

1- a+ ab( )
2

2a 1- b( ) 1- a+ ab( )

a2 1- b( )
2

1- a( )
2
b 1- b( ) + b2

1- b( ) 1- a( )
2

1- 2b( ) + 2b( )
1- 1- a( )

2

( ) 1- b( )
2

b2

2b 1- b( )

1- b( )
2

æ

è

ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷

m0

m1

m2

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷
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Let us consider in detail the relation 

m2 = a2 1- b( )
2
m0 + 1- 1- a( )

2

( ) 1-b( )
2
m1 + 1- b( )

2
m2

The steady state probability μ2 of a dyad showing employment 

for both agents is given by 

a2 1- b( )
2
m0

1- b( )
2
m2

1- 1- a( )
2

( ) 1- b( )
2
m1

which is the probability that both agents were unemployed, get  

employed and both stayed employed, plus 

which is the probability that one agent was employed and the  

unemployed receives an offer of employment directly or through 

the already employed and both stay employed, plus 

probability that both agents were employed, and stayed employed 
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The solution of the linear systems can be worked out  

but it is quite cumbersome. 

m0

m1

m2

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

=

b2 1+ 1- b( ) 1- a( )
2

( ) / X

2a 1- b( ) 1+ 1- b( ) 1- a( )( ) / X

a2 1- b( )
2

1- a( ) 3- a( ) 1- b( ) +1( ) / X

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

where 

X = b2 1+ 1- b( ) 1- a( )
2

( ) + 2a 1- b( ) 1+ 1- b( ) 1- a( )( )

      + a2 1- b( )
2

1- a( ) 3- a( ) 1- b( ) +1( )
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3 

2 
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Therefore the network type has an impact on the average   

employment rate and on the correlation of employment of pairs. 

For other different network shapes it is difficult to analytically  

estimate the steady state of the unemployment rate but such 

information can be obtained by numerical simulations  

For example for the following cases Calvò-Armengol and Jackson 

obtain when a=0.100 and b=0.015 

probability  

1 unemployment 0.132 

1 3 

2 4 

probability  

1 unemployment 0.083 

corr(1,2)=0.041 

4 

3 

2 

1 

probability  

1 unemployment 0.063 

corr(1,2)=0.025 

corr(1,4)=0.019 

4 

3 

2 

1 

probability  

1 unemployment 0.050 

corr(1,2)=0.025 

corr(1,4)=0.025 
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By investigating a more structured network Calvò-Armengol  

and Jackson found 

3 

2 

1 

5 
4 

7 

6 

10 

8 

9 

Unem. rate 

0.047 

Unem. rate 

0.048 

Unem. rate 

0.050 

The parameters of the model for this simulation are a=0.100 and 

b=0.015 

The degree of each node is 3 
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A system highly studied in econophysics is the international  

trade network (also called world trade web).   

Nodes are countries  

Edges are directed and weighted  

according to the amount  

in dollars of  

imported or 

exported  

goods 

Fagiolo, G., 2010. The international-trade network: gravity equations and topological properties.  

Journal of Economic Interaction and Coordination, 5(1), pp.1-25. 

USA 

GFR 

SWZ 

ITA 

CHN 

JPN 

RUS 

UKG FRN 

IND 

CAN 
MEX 
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Most of  the  

earlier studies  

have focused  

on the topological  

properties of the  

international  

trade network.   

Serrano, M.Á. and Boguñá, M., 2003.  

Topology of the world trade web.  

Physical Review E, 68(1), p.015101. 
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Local clustering coefficient Average nearest neighbors degree 

Serrano, M.Á. and Boguñá, M., 2003. Topology of the world trade web.  Physical Review E, 68(1), 

p.015101. 
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One way to measure the "assortativity" of a network is through 

the average nearest neighbor degree (or in the weighted case  

strength)  

Assortative networks Disassortative networks 

The international trade network is disassortative. What about 

comparing this stylized fact with a "null" model? 

ki

nn =
pij + pji( )kjj

å
ki

pij =
kikj

1+ kikj
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The first step is to clearly identify the null model. 

In the simplest case the unweighted network is considered and 

a good  random "null" model is the so-called "configuration model". 

The configuration model is just a network model characterized by  

the same degree sequence as the one investigated but with  

links randomly defined.  

A configuration model is usually numerically investigated. 

In the numerical approach  

random realizations of the  

configuration model are  

obtained through the repeated  

application of the rewiring 

procedure  

Maslov, S., Sneppen, K. and Zaliznyak, A., 2004. Detection of topological patterns in complex  

networks: correlation profile of the internet. Physica A333, pp.529-540. 
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There are also analytical approaches based on the maximization of 

an Entropy. This approach estimates the set of graphs G such that 

the P(G) subject to some specified constraints {Ca} maximizes 

the entropy 
S= - P G( ) lnP G( )

G

å

The formal solution to the entropy maximization problem can be 

written in terms of the so-called Hamiltonian H(G) providing the 

"energy" or fitness associated to a given graph G 

H G( ) = qa

a

å Ca G( )

The maximum entropy is obtained when 

P G( ) =
e

-H G( )

Z
with Z = e

-H G( )

G

å

Squartini, T., Fagiolo, G. and Garlaschelli, D., 2011. Randomizing world trade. I. A binary network analysis.  

Physical Review E, 84(4), p.046117. 
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The analytical approach provides results such that the ensemble  

average of each constraint Ca is equal to the empirically observed  

value whereas the numerical rewiring procedure guarantees that the  

observed value in the null model is exactly equal to the empirically  

observed one. The results of the two approaches converge for large  

networks. 

One plus of the analytical approach is that it works both for  

unweighted (called by the authors "binary") and weighted networks.  

The rewiring procedure is not unique and less well defined in  

weighted networks. In both cases the degree sequence is usually 

not controlled. 

Squartini, T., Fagiolo, G. and Garlaschelli, D., 2011. Randomizing world trade. I. A binary network analysis.  

Physical Review E, 84(4), p.046117. 

Squartini, T., Fagiolo, G. and Garlaschelli, D., 2011. Randomizing world trade. II. A weighted network  

analysis. Physical Review E, 84(4), p.046118. 
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Comparison with a maximum entropy null model in the  

International Trade Network 

Squartini, T., Fagiolo, G. and Garlaschelli, D., 2011. Randomizing world trade. I. A binary network analysis.  

Physical Review E, 84(4), p.046117. 

Squartini, T., Fagiolo, G. and Garlaschelli, D., 2011. Randomizing world trade. II. A weighted network  

analysis. Physical Review E, 84(4), p.046118. 

unweighted weighted 
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An investigation performed yearly over a long period of time  

unweighted directed 

in-in in-out 

out-out out-in 

After 1965 the null model explain quite well the assortativity of the  

network 



Feb 4th, 2016 Perm Winter School 2016 91 

A different conclusion is reached for the weighted ITN 

Fagiolo, G., Squartini, T. and Garlaschelli, D., 2013. Null models of economic networks: the case of the  

world trade web. Journal of Economic Interaction and Coordination, 8(1), pp.75-107. 
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Is information about preferential trading and/or indirect trading 

present in the weighted international trade network? 

The comparison with the null hypothesis is suggesting a  

positive answer.  

Several filtering methods have been devised to detect the 

links that are highly informative in characterizing the system  

and/or in detecting clustering of nodes (called communities  

in network science) and over-expression of small sub-graph 

(called triads or motifs).   
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