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Milgram’ s 1967 “small world” experiment

Is it possible to deliver a message to a stock dealer in Boston
starting from randomly extracted people in Nebraska and Kansas?
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The small world effect:
the Milgram’ s experiment (1967-1969)

1. Starting points of the chain of correspondence: Omaha, Nebraska and Wichita, Kansas. End
point of the chain of correspondence: Boston, Massachusetts.

1. Information packets were initially sent to "randomly" selected individuals in Omaha or
Wichita. They included letters, which detailed the study's purpose, and basic information about
a target contact person in Boston. It additionally contained a roster on which they could write
their own name, as well as business reply cards that were pre-addressed to Harvard.

1. Upon receiving the invitation to participate, the recipient was asked whether he or she personally
knew the contact person described in the letter. If so, the person was to forward the letter directly
to that person.

2. In the more likely case that the person did not personally know the target, then the person was to
think of a friend or relative they know personally that is more likely to know the target.
They were then directed to sign their name on the roster and forward the packet to that person. A
postcard was also mailed to the researchers at Harvard so that they could track the chain's
progression toward the target.

1. When and if the package eventually reached the contact person in Boston, the researchers
could examine the roster to count the number of times it had been forwarded from person to
person. Additionally, for packages that never reached the destination, the incoming postcards
helped identify the break point in the chain.
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The Small-World Problem Six degrees of separatlon

By Stanley Milgram

Total no.of
Chains, 44

ﬁ" On average, less
than Six steps !!!

0O 2 4 8 8 10 12
No. of Intarmediaries needad
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Network studies have been
an area of research in
Social Sciences since

the fifties of the last
century
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Robust Action and the Rise
of the Medici, 1400-1434
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Mathematicians have modeled networks since 1950s. One
prominent model of a class of networks 1s the random network

Erdos-Rényi model (1959-1961)

On random graphs L

Dedicated to O. Varga, at the occasion of his 50" birthday.
By P. ERDOS and A. RENYI (Budapest).
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Erdos-Rényi model (1959-1961)
On random graphs L

Dedicated to O. Varga, at the occasion of his 80" birthday.
By P. ERDOS and A. RENYI (Budapest).

Let us consider a “random graph” I, y having n possible (labelled)
vertices and N edges; in other words, let us choose at random (with equal

‘n
probabilities) one of the ( ‘2’) possible graphs which can be formed from
N,

the n (labelled) vertices Py, P,,..., P, by selecting N edges from the (g ]

possible edges PA?J (1 =i<j=n). Thus the effective number of vertices of
I\, x~ may be less than n, as some points P; may be not connected in 77, x
with any other point 7;; we shall call such points P; isolated points. We
consider the isolated points also as belonging to I', v. ', x is called com-
pletely connected if it effectively contains all points P, P.,..., P, (i, e. if it
has no isolated points) and is connected in the ordinary sense. In the present
paper we consider asymptotic statistical properties of random graphs for
n— + ~. We shall deal with the following questions:

1. What is the probability of I, y being completely connected?

2. What is the probability that the greatest connected component (sub-
graph) of I', x should have effectively n—#k points? (k=0,1,...).

3. What is the probability that I, » should consist of exactly &--1
connected components? (k=0,1,...).

4. If the edges of a graph with n vertices are chosen successively so
that after each step every edge which has not yet been chosen has the same
probability to be chosen as the next, and if we continue this process until
the graph becomes completely connected, what is the probability that the
number of necessary steps » will be equal to a given number /?
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Why networks become so interesting at the end of the 1990s?

Google

How big 1s the
World Wide Web?

Sir Tim Berners-Lee
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Web Images Videos Maps News More~  Search tools

About 25,270,000,000 results (0.67 seconds)

The | Define The at Dictionary.com
dictionary.reference.com/browse/the ~
(used, especially before a noun, with a specifying or

particularizing effect, as opposed to the indefinite or generalizing
force of the indefinite article a or an): ... (used to mark a proper
noun, natural phenomenon, ship, building, time, point of the

compass, branch of endeavor, or ...
Agora - Aegean - The american crisis - The 4-1-1

News, sport and opinion from the Guardian's US edition ...
www.theguardian.com/ ™

Latest US news, world news, sports, business, opinion, analysis
and reviews from the Guardian, the world's leading liberal voice.

News, sport and opinion from the Guardian's global edition ...
wvm.theguardian.comfinternatiﬂnal -

Latest international news, sport and comment from the
Guardian.

Main section | News | The Guardian | Todayspaper | The ...
www.theguardian.com/theguardian ~

National morning quality (broadsheet) newspaper includes daily
stories and sections, weekly supplements by day, searchable
archives plus access to the rest of ...
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The WWW is a dynamic
entity in continuous
development. Tim
Berners-Lee and collaborators
have proposed to consider it
as an object of scientific
study developing a

"web science".

James Hendler, Nigel Shadbolt, Wendy Hall,
Tim Berners-Lee, and Daniel Weitzner.

Web science: An interdisciplinary approach
to understanding the Web. Communications

of the ACM, 51(7):60-69, 2008.
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Welcome

statista ¥

Our Services Industries Topics Countries Digital Markets Infographics

From WWW
to Social
Networks

Leading social networks worldwide as of November 2015, ranked by number of active
users (in millions)

Facebook 1,550
WhatsApp 900

Qg 860

Facebook Messenger

OZone

WeChat

700

653

650

Instagram 400

Twitter 316

Baidu Tieba 300

Skype 300
Viber 248
f . Facebook . Twitter . VKontakte . QZone . QOdnoklassniki .

Tumblr 230

Sina Weibo

212 10




Networks were and are investigated 1n several different disciplines.
It 1s therefore a genuinely multidisciplinary research topic.

Networks are investigated in

Social sciences
Mathematics
Computer science
Statistical physics
Economics
Biology
Physiology
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In 1ts more general definition a network 1s "a collection
of interconnected things" (Oxford English Dictionary).

In network modeling and network science "network" 1s
often interchanged with the term "graph".

(b Q

Types of networks

| Examples of various types of networks: (a) an undirected network with only a single type
of verter and a single type of edge; (b) a network with a number of discrete verter and

edge types; (c) a network with varying verter and edge weights; (d) a directed network in
which each edge has a direction.

Newman, Mark EJ. "The structure and function of complex networks." SIAM review 45,
no. 2 (2003): 167-256.
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A graph G=(V', E) is a mathematical object consisting of a set

J of vertices (also called nodes) and a set E of edges (also
called links).

Edges are defined in terms of unordered pairs {u,v} of distinct
vertices u,v belonging to the set V.

The number of vertices N, 1s sometimes called the order of the graph

The number of edges N 1s sometimes called the size of the graph
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A graph H=(V,E,) 1s a subgraph of G=(V,E) if
V, V5 and By [ Eg

A graph H=(V,Ep) 1s an induced subgraph of G'=(V,Eg) 1f
V- [ Vg is a pre-specified set of vertices and E,. [] E,,. are
the edges observed among them
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A graph where the relationship between vertex u and vertex v
presents a directionality is called a directed graph or digraph.

Directed graphs have directed edges also called arcs

In a directed graph the direct edge {u,v} 1s therefore different

for {v,u}. Conventionally, the formalism {u,v} reads tail u to
head v

U ——) {u,v}

V — e U vuf

When we observe more than one type of directed edge between
two vertices we are in the presence of a multi-digraphs

Note that in a simple digraph we might have up to 2 directed
edges between two vertices. When both are present we say that
the two arcs are mutual.

Feb 4th, 2016 Perm Winter School 2016 15



Two vertices U, V| V are adjacent if joined by an edge in E

Two edges €, €, | Eare adjacent 1f connected by a vertex in V

The degree of a vertex is the number of incident edges on it

The degree sequence 1s obtained

- / by arranging the degree of
\a \ / 'f/m vertices in non-decreasing order
N \\ - 747 P {1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,4,4,5,6 }
/ \ P N
: $10,32,37,45,47,60,76,12,29.67,69,
8 | @ 77,79,20,87,19,75,44,15}
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In a digraph we have in-degree and out-degree

In the present example, the in-degree
sequence 1s

. / {0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,3,3,4,6}
N\ e ")??.3'i”y | £10,12,20,29,32,44.45,47,60,67,69,
N -0 37,76,79,77,19,87,75,15}
5 \19/_74 8?_/
/ 67 ) \ . .
EQH\ y & The out-degree sequence 1s
1N {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2.2,2.3,5}

{15,37,75,76,77,87,10,19,32,45,47,
60,79,12,29,67,69,20,44 }
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A vertex v 1s reachable from a a0
vertex u 1f there exists at least g ?i'ﬁ‘l“ll*
a walk connecting u to v as"lﬁﬂ'“‘“\
T la”x p
o8 oo \ -
26 L/ Va
. e 30 ”‘aﬁﬂ;{aﬂ% . %a » /L

A graph G is said to be at e Koy, 7
connected if every vertex 8
1s reachable for every / e

72 34
/ / {:;9
other one s 3 T
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|
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&
i
52
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A component of a graph 1s a
maximally connected subgraph

The component with the largest
number of vertices 1s called
the largest connected component
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In the case of digraphs the concept of connectedness 1s
specialized 1n two cases.

A digraph 1s weakly connected 1f the underlying undirected
graph 1s connected

A digraph is strongly connected 1f every vertex v 1s
reachable by every vertex u through a directed walk

Feb 4th, 2016 Perm Winter School 2016 20



A widely used notion of distance between two vertices of a graph i1s
defined as the length of the shortest path(s) between the two vertices

Number of nodes 19

20— P —(12 Average path length

. K 3.053
67 \
69/ \ / “ Diameter 7

15 (see the paths from

N 60 to 76)

45

The diameter of a network 1s the maximum length of

shortest paths
Feb 4th, 2016 Perm Winter School 2016 21



When an edge of a graph has associated a numerical weight
the graph 1s called a weighted graph.

When edges are weighted the length of a walk (trail, path, etc)
is defined as the sum of the values of the edges composing the
walk. The distance 1s always defined as the weighted length of
the shortest path.

The notion of degree 1s generalized to take into account
the weights of the edges. The generalization is called the
strength of the vertex and 1t 1s the sum of the weights of all
incident edges.

Feb 4th, 2016 Perm Winter School 2016
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Some reference graphs

A complete graph 1s a graph where
every vertex 1s linked to every
other vertex.

A complete subgraph 1s called

a clique
Feb 4th, 2016

A d-regular graph 1s a graph where
all vertices have degree d

-———
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A connected graph with no cycles
is called a tree

51
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—]3

10

29 /inter S«

The disjoint union of trees is
called a forest
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A digraph whose underlying graph 1s a tree 1s called a directed

tree
-, root .
/] Directed tree may show
\ ancestors Aa root, 1.e. a unique vertex
parent (3’ from which there 1s a directed
(2]

| path to any other vertex of
/ l\ / \ | the graph.
[

[
/ \ I When a root 1s present in a
directed tree the tree 1s called
descendantsW
a rooted tree

hildren (4

leaf
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O Bipartite graphs

A bipartite graph 1s a graph where the set
of vertices can be partitioned in two disjoint
sets and edges are present only between a
pair of vertices of different nature (for
example, actors and movies, genes and
organisms, students and courses, etc)
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From a bipartite graph it 1s quite common to extract projected graphs.

I<I
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A classic example 1s the bipartite network
of Movies and Actors

An example 1s the set of all world movies produced during the period
1990-2008 which are present in the International Movie Data Base.

This set of data comprised 89605 movies realized in 158 countries.
412,143 different actors played in these movies.

Actors

Movies
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One typical characteristic of complex systems and complex
network is to be heterogeneous

WORLD database 1990-2008

Movies: number of actors.

e
LS -
RSP

actors

Actors: number of movies
10 E T T LA T T T T T T

— slope -3.3

movies

Kevin Bacon
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An example of a very small cluster
of the large projected R
netWOI'k Of US c Crew_(2000/1)

How to Rob_a Bank (2007)

)
kern_Park_(2002)
Peraonals 119949)

movies

h\,ﬂall About_ the Berrjamrrra (2002)
.'Naked_Urrder_Heaverr (2007)

SR - / /./
In_the_ Shad@wa 2'3'3 Larry_Clark,_Great_American_R

Rarrdom Hearts_{1999)
Escape from_Cuba_{2003)
mlr (200112

Arr}; Gwen Sunda}; 1999
® Flipper_(1996) A A Bully_(2001)
Transporter 2 2DG5

_,,_..ni"
Shootfighter_I1_{1995)
RO}’E" Paims “9 /) ZXBig_Trouble_(2002) @

The Last_Home_Run Fl?&%th ~(1992) % Hol}r_Marr_HQQB]l

] Cornplete_Guide_to_Guys_{2005]
The_Specialist_(1994) | / The_Truman_Show_{1998) B.ad._BO}-“S_I |_{2003)
South Beach_(1993)=7J Gone_Fishin'_{1997)
M Blood_ and Wrrre _(1996)

/.Deadl}; Rivals_(1993) ( F’Iatoa Run_{1997)
/ Wild_Things_{1996)

Get_Shorty_{1995)

Double_Wharmmy_{2001)

The_Real Blonde (1997)
Bad_Boys_{1995)
AN

/ Fair_Game_{1995)
Only_the_Strong_{1993)

Nrght of_the_Archer_{1994) My_Father_the_Hero_{1994)

Silent_Hunter_{1995) Striptease_(1996) %he_Perez_Famil}f_H a95)
Traces_of Red_(1992)

Fires_Within_{1991)



Planar graphs

A graph 1s planar 1f its edges can be embedded on a surface of
genus 0, 1.e. a surface like a plane or a sphere, without intersections
of the edges.
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Planar graphs are naturally observed in the presence of

geographical constraints

The network of navigation points of the German airspace

during different time interval of the day

32
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For digraphs the matrix A;

1S not symmetric

if {i,j}1 E
otherwise,

1,
0

i,
|
1

1

0

0

1
1

0

0
0

1
1

0

1
1
1

01010 (O

1

1

1

O (0 ]0 (0 (O

0 (0

0 (010

1121312 |2 \AJ:__

0

1

1

1

0 (010

1

0 (0 1]0 (O

2 (3 (4 |5]16 |7 (819

1

1

1

0

0

2 ({0 (0 [0 |0 ]O

3 (01010

4

6

71010 (0

8 (0|0 (0|0 |0 (O ]O0]O

910 {0 {0 |0 {0 (O ]O [0 (O

3
in-degree

out-degree
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Other properties of the adjacency

matrix A;; (2) (1)
12 (3|4|5|6|7]8]9 \ _ \/;\
™, |
- I,.- 4 .'l_———_'_—___-l"x : -/
1 {0 1|1 |0 |1]0|0]O|O @ —\E
2 (1 |0]0 |1 |0 |1 |0 O[O y \ / N
3 (1]0|0 1|1 |0]0]|O|O L))
410 |1 |1 |0 |1 |1 ]1]|0]|O \/'j'
51|01 |1 |00 |1 |00 (8) \
6 |0 (1|0 [1]0 0|1 |10
71010 (0 |1 |1 |1 [0l ]I
8 |0 (0[O0 |00 |1 [1]0]1
9 |0 [0 |0 (0|0 |01 |10

The r-th power of A;; has elements A"; providing the number
of walks of length » between vertices i and j

Feb 4th, 2016 Perm Winter School 2016 35



Edge list

Data structures for a graph
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Another vertex centrality measure: the vertex betweenness

S
stttv st
where o, 1s the total number of shortest paths from node s to node ¢
and o (v) 1s the number of those paths that pass through v.
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The edge betweenness

The edge betweenness 1s defined as:

o S,(€
CG®=a — (9
sttlv Sst
where o, 1s the total number of shortest paths from node s to node ¢
and o (e) 1s the number of those paths that pass through edge e.
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AJS Volume 98 Number 6 (May 1993): 1259-1319

Robust Action and the Rise of the Med

John F. Padgett and Christopher K. Ansell
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* Graph centralization can be measured with the network betweenness statistic (Cy)
of Freeman (1979, p. 230), usually interpreted as intensity of concentration of resource
or information flows. Among Medicean families, marriage relations were concentratecd
at the level Cp = .362. Among oligarch partisans, marriage Cy = .184. On the
economic front, Cy = .429 among Mediceans, compared to Oy = .198 among oli-
garchs. (Economic ties, including personal loans, were pooled for the latter calcula-
tions. Personal loans were included because otherwise the density of intra-Medicean
ties was too low. All data were binarized and symmetrized for these calculations, as
required by the Freeman measure.) We thank an AJS referee for the suggestion of
calculating these statistics.

Centrality betweenness:

Marriage relations:
Medici Cz=0.362

| —ARDINOHELLI

RONDINELLT <€

Robust Action

GUADAGNT

DELLA CASA

Other oligarch Cp=0.184 |, M"f o
: SCAMBRILLA o :FEM:E:‘??]
Economic ties (including E e 5 m/j . s
personal loans): | N
Medici C=0.429 : - -
Other oligarch C;=0.198
Types of Ties:

Fic. 2b.—“Political” and friendship blockmodel structure (92 elite families)
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Other network indicators

Local clustering coefficient @
2‘{ ejk}‘ c=1
=

ol
o

{ } Is the number of edges observed between  — 1/3
IkJ  pairs of vertices jk, ... linked to i

ki IS the degree of vertex | . OQ

c=0
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Other indicators characterizing a graph

Global clustering coefficient

Connected triple Triangle
Fraction of path of

length 2 in the network
that are close

A triangle
contains
3 triples

C= 3" total number of triangles
total number of connected triples
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Models of graphs: Erdos-Rényi
model (1960): Random network

Connect with

probability p
p=1/6 n=10
<d>=z=
p(n-1) ~ 1.7
-
| .o.>
& O 2\ e’
n . n-
P(d)=¢ , P"@- )" d@ )dl
e a -
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The tail of the degree
distribution 1s
decaying quickly

Poisson distribution
for large n and z=cost
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What 1s happening as a function of the average degree?

N, =20
.oo. e © o © © .o.. 0'0.
e © ® @ ‘: @ ® © ® ® .. ® o ® ©
: @ () ./. e © ® o 0. il ®
@
®

AR ’

<d>=0.6 <d>=0.7 <d>=0.8 <d>=0.9 <d>=1.0
LCC6 LCC3 LCCS8 LCC9 LCCS8

<d>=1.1 <d>=1.2 <d>=1.3 <d>=14
LCC 6 LCC6 LCC 8 LCC 8
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LCC 13
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What is happening as a function of the average degree for large
networks? N =40

<d>=0.6 <d>=0.7 <d>=0.8 <d>=0.9 <d>=1.0
LCC8 LCC8 LCC5 LCC7 LCC8
® o ® ® © () &) ®
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.‘.‘ .o. ‘: .o'.o e o ..... n’.o. :o
oo o e % % o ©® . o0
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o '.5 34;.}‘ S . ’
<d>=1.1 <d>=1.2 <d>=1.3 <d>=1.4 <d>=1.5
LCC 12 LCC 18 LCC 13 LCC 27 LCC 22
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In fact for an Erd0s-Rényi1 network we observe

THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS
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Fig. 4.1 The mean component size (solid line), excluding the giant component if there is one, and

the giant component size (dofted line), for the Poisson random graph, (4.3) and (4.4).

Newman, Mark EJ. "The structure and function of complex networks." SIAM review 45,
no. 2 (2003): 167-256.
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Small world and weak links
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Watts-Strogatz model

Regular  Small-world Random

p=0 > p=1
Regular Increasing randomness P

1K O oo ] '.:';"'E'l" D' L v TR
“‘3:‘ . Gp) /1 C0) 7 ] C(p) : average clustering coeff.
0s [ ’ ; L(p) : average path length
04l . o : C(0) and L_(O) refer to the

: ‘ regular lattice

ozl L(p)/ L(O) * . E

00001 0007 oo or % Random

p

Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of ‘small-world’networks."
nature 393, no. 6684 (1998): 440-442.



Networks are clustered [large C] but have a small
characteristic path length [small L].

Network C Crand L N
WWW 0.1078 | 0.00023 3.1 153127
3015-
Internet 0.18-0.3| 0.001 | 3.7-3.76 6209
Actor 0.79 0.00027 3.65 225226

Coauthorship 0.43 | 0.00018 5.9 52909

Metabolic 0.32 0.026 2.9 282

Foodweb 0.22 0.06 2.43 134

C. elegance 0.28 0.05 2.65 282

Feb 4th, 2016 Perm Winter School 2016



Degree distribution of several real networks
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

slopes (A) Voeror = 23, (B) Yy = 2.1 a0d (C) v\, = 4.

Barabasi, Albert-Laszl6, and Réka Albert. "Emergence of scaling in random networks." Science 286,
no. 5439 (1999): 509-512.
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Degree distribution

Poisson distribution

P(k)
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Scale free networks are sparse networks

The probability that any node on the network is highly
connected to many others 1s very low.

The probability that a very large number of nodes are
connected loosely or not at all is very high.

Complex networks are typically sparse networks

Barabasi and Albert (1999)
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The Barabasi-Albert model of
preferential attachment

At each time step a new vertex is added to the network.
The new vertex forms m connections with existing vertices.

The probability that a new edge attaches to a vertex with
degree dis

dp(d)
2XM

where 2m 1s the mean degree of the network.

Barabasi, Albert-Laszl, and Réka Albert. "Emergence of scaling in random networks." Science 286,

no. 5439 (1999): 509-512.
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One can write a master equation describing the dynamics of p_(d),
which 1s the degree distribution when the network has n vertices
I 1
- 2(d-1)p,(d-1)- Zop, (o
(n+1) Py.y (d) - npy(d) =1 1

|

|

: ford>m
! 1-

|

ford=m
5P P, (M)
where the mean number of vertices of degree d that gain an
edge when a single vertex with m edges is added 1s

m” ——==dp(d)
Looking for stationary solutions
Pr () = Pn(d) = p(d)
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Under the stationary assumption the above master equation implies

I 1

i S(d-1)p(d-1)- Zdp(d) o
p(d) =i 1 ford=

i 1- ~mp(m) T

f 2

By solving this equations recursively we have

p(m)=—=— p(d)=p(d- ;-

Which are equivalent to

4 _(d-1)(d- 2)J (m+1)m = 2m(m+1) @Zm(m+1)

d )_(d+2)(d+1)dD (m+3) P )_(d+2)(d+1)d d’
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A numerical simulation of the model

| | 10 100 10010
BA network
s (m=8; 10,000 nodes;
0.1 80,000 hllkS) 0.1
2m(m+1)
Ol? — (d+2)(d+1)d
0.01 = 0.01
Degree and age of
nodes are correlated
0.001 0.001
0.0001 ouvmen e 0.0001
I 10 100 1000
degree d

Younger nodes have
smaller degree
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In network theory the most basic model of a random graph
presenting a given degree distribution 1s the configuration
model.

It should be realized that the configuration model does not
fully characterize a network but only describes the most basic
characteristics of 1t. In fact, different networks characterized by
quite different local structures can be characterized by the
same configuration model.

A scientific question widely investigated has been: By assuming
a given configuration model, when 1s a giant component observed
to be present in the considered network?
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Emergence of a giant component in a network described
by a given configuration model

A heuristic argument describing quite well the setting of a giant
component

A giant component does not set up in the system until a negligible
number of cycles (closed paths) are observed in the network. Therefore,
when the giant component is not yet formed, the paths observed in the
network are indistinguishable from paths observed on trees.

Q

.
N

ICohen, Reuven, Keren Erez, Daniel Ben-Avraham, and Shlomo Havlin. "Resilience of the Internet to
random breakdowns." Physical review letters 85, no. 21 (2000): 4626.
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The argument of Cohen et al 1s as follows: Let us estimate the
probability that 2 occupied nodes are connected in a component
with s nodes. This probability is proportional to  a&&

no
Therefore the fraction of links that are belonging to cycles
1s of the order of ag &

ﬂﬂ

Where s, 1s the size of the component i in the network

30 g5 S
ng . N

We can write the inequality a

where S 1s the size of the giant component.

o The fraction of links that lie on
Since @ §=n cycles is of the order of no more
i than S/n

fCohen, R., K. Erez, D. Ben-Avraham, and S. Havlin. "Resilience of the Internet to random breakdowns.
Physical review letters 85, no. 21 (2000): 4626.
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Let ¢ be the number of nodes that can be reached in the network
by selecting randomly a link and then one node of the link and
exploring all nodes reachable from this node

O

By assuming that the giant component 1s still not present,
1.e. the number of cycles 1s negligible

£ P(d)d

F=1+a (d-1)f
/ d=1 <d>
limit number of Distribution of degre§
nodes reached from one of .node found selecting
selected a link at random and

selecting one of the nodes
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gd)- (A
f=1+ <d>

The previous equation states that:

1
- <d2>/<d>

The quantity ¢ is finite and positive when

or [ =

_ @>O which means <d2>- 2<d><0

(d)

The giant component will set in when the above condition 1s
not verified <d2>- 2<d>>0

Therefore a good approximation for the threshold setting the
presence of a giant component 1s

<d2>:2<d>
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Let us examine some popular models of network

a) Poisson degree distribution (Erdds-Reény1 model)

d _.n
P(d) » (np)dle p with

(d”)=(d)+(d)’

Therefore the condition for the onset of a giant components

(d*)- 2(d)y=(d)+(d)" - 2(d)>0
(d)>1
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In fact for an Erd0s-Rényi1 network we observe

THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS

1[:' [ T T 1 [ | L e | | T T 1 | T F [ L B

u w
S | -
= [ L
£ I =
i =
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o - o
= 4
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mean degree d
Fig. 4.1 The mean component size (solid line), excluding the giant component if there is one, and

the giant component size (dofted line), for the Poisson random graph, (4.3) and (4.4).

Newman, Mark EJ. "The structure and function of complex networks." SIAM review 45,
no. 2 (2003): 167-256.
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b) Scale free networks (Example: Barabasi-Albert model)
P(d)=cd? with g=3

< d2> diverges

Therefore there 1s a giant component regardless of the
details of the distribution
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Let us consider the problem of the diffusion of something
(an 1nnovation, a rumor, a disease, etc) on a network

By defining A=v/6 where v 1s the transmission rate of the
"Infection" and o 1s the "recovery rate".

The by assuming a Susceptible, Infected, Susceptible
model one can estimate the role of the topology of the network
in network diffusion.
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Under the assumptions of the model and some simplifying
assumption the result obtained for the spreading of the "epidemics"
for different net o

04 - : - |
1 03 =
r»qg= -
/(" - 1)
p 02 ¢
0.1 +
00 =i ' '
0.0 0.2 04 0.6

FIG. 1. Density of infected nodes p as a function of A in
the WS network (full line) and the BA network (dashed line).

Pastor-Satorras, Romualdo, and Alessandro Vespignani. "Epidemic dynamics and endemic states in complex
networks." Physical Review E 63.6 (2001): 066117.
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Networked markets 1n economics: Empirical
evidence of the role of social networks 1n the
labor market

In an early study of the textile industry Myers and Shultz (1951)
shown that 62% of interviewed workers found their job through
a social contact, 23% by direct application, and 15% through an
employment agency, advertisement or other means.

Similar results were obtained by Rees and Shultz (1970) and by
Granovetter (1995).

Summarizing the results of 24 studies, Truman Bewley (1999)
estimated that 30 to 60 percent of jobs were found through
friends or relatives.
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TABLE 1

Education and Methods of Job $earch

Category 1 2 3 4 5 $ 7 8 Full All
did  pub. priv. cur. other friend ads other The Panel Study
nothing agency agency emplr emplr aequai. activ.  searchers  PSID
——r of Income
Sample frequencies 115 218 95 57 294 155 335 310 5.8 100 Dynamics - PSID
Years = 8 179 205 182 242 210 | 233 | 169 144 17.0 16.7 .
8 < Years < 11 418 252 255 303 287 LEJ 272 306 31.6 e IS ﬂ.le lOIlgGSt
Years = 12 269 322 255 303 287 278 323 289 30.8 arle  I'unNNing
Years = 12 + nonac. 7.5 187 255 152 170 154 178 14.6 18.7 longitudinal
13 < Years < 15 45 95 55 00 35 67 5.0 4.3 9.4
BA + adv. 15 62 00 00 L2 15 33 1.7 6.2 household Survey
Searching on-the-job — ln the World
Sample frequency 605 63 30 20 94 85 160 170 8.1 100
Years = 8§ 71 98 167 63 132 [EJ 132 66 8.3 16.7
8 < Years < 11 172 177 125 125 132 145 116 80 14.3 17.9
Years = 12 337 412 250 313 342 290 380 387 34.9 31.0
Years = 12 + nonac. 272 255 250 438 224 [ 217) 186 226 25.3 187 From: Ioannides, Y. M.,
13 < Years < 15 94 39 167 63 158 | 130 140 183 11.9 94 and L. Datcher Loury. "Job
BA + adv. 53 20 42 00 132 | 10| 47 58 5.2 62  information networks,

Notes: The categories are whether: 1. did nothing; 2. searched with a public employment agency; 3. searched nelghborh(')'od effects, and
with a private employment agency; 4. checked with the current employer; 5. checked with other employer; 6. inequality." Journal of
checked with friend or relative; 7. placed or anw.'e_red ads; or, 8. engaged in uthr:ui activity, The results are sum- economic literature (2004)
marized in the following table. The entries in the lines labelled "sample frequencies” are not mutually exclusive—

some respondents may be engaged in more than one method—and thus do not add up to 100. The entries for 1056-1093.

educational attainment sum up to 100 in each column. The column labelled "Full" gives the educational attain-

ments for the respective subsample of unemployved and those searching on the job in the 1993 sample of the

PSID. The column labelled "All" gives the educational attainments for the entire 1993 sample of the PSID. 68




TABLE 2
Urban Size and Methods of Job Bearch

Category 1 2 3 4 5 7 5 Full All
did pub.  priv.  curr.  other friend ads  other

nothing agency agency emplr emplr  acquai activ.  searchers  PSID
Unemployed
Sample frequencies  11.5 218 9.5 3.7 204 15.5 335 310 58 100
= 300,000 3820 2717 1560 3510 1317 [ 51.11 | 2221 2369 23.56 16.02
[ 100000, S00000) 1205 1973 1085 320 3459 ’ 14.45 ‘ 19.07  21.66 200,99 24.15
[S0000, 100000} 169 725 1534 2116 T2 83T 1561 6.56 .39 11,76
[25000, 50000} 17.14 7885 3043 2681 753 94587 1335 16594 14.36 13.44
[ 10000, 250000 3.31 1457 2351 388 1784 T34 2086 1836 14,30 15.74
10,000 = 2762 2338 487 521 17.14 KT8 811 12,16 15.55 17,38
Employed
Sample frequency 60,5 6.3 3.0 2.0 9.4 8.3 160 17.0 5.1 100
= 500 000 16.19  6.36 T.85 Ay 12.28 [ 2243 | 1403  10L17 14.79 16.02
[ 100000, S00000) S0.77 2263 2292 1927 2747 2545 2745 30,08 24.15
[ 0000, 100000 1167 1315 4189 2872 2583 1768 1838 1894 13.43 11.76
(25000, 50000} 1221 13.29 10 2176 1243 1749 1804 10890 1280 13.44
[ LOOOC, 250007 13658 598 2.18 1.33 6.73 5.81 1042 1627 13.08 15.74
10,000 = 12,10 3860 2516 2783 1517 1434 1068 1625 13.44 738

Naotes: The categories are whether: 1. did nothing; 2. searched with a public employment ageney; 3. searched
with a private employment agency; 4. checked with the current employer; 5. checked with the other emplover; 6.
checked with friend or relative; 7. placed or answered ads; or, 8. engaged in other activity.

The entries in the lines labelled "sample frequency” are not mutually exclusive—some respondents may be
engaged in more than one methods—and thus do not add up to the number in column "Full". The column
labelled "Full" gives the relative geographical distribution of the two respective categories, l.l]lf:!mp]G_'y'Ed and
emploved looking for job, for the entire 1993 sample of the PSID. "All" gives the geographical distribution of the
entire 1993 sample of the PSID. All caleulations are weighted by means of the latest weight in PSID.

The geographical categories are defined in terms of the size of the largest city in the county of a household's resi-
dence, The categories are: SMSA with largest city 500,000 or more; SMSA with largest city between 100,000 and
499,000; SMSA with largest ity 50,000 to 99,999; non SMSA with lurgest city 25,000 to 49,999; non-SMSA with
largest city 10,000 to 24,999; non SMSA with largest city less than 10,000,




Strong and weak ties

Granovetter's work has been extremely influential in this area
of research.

Granovetter obtained a proxy of the strength of a ties by
considering the number of times that the two social actors
have interacted during a year (strong= at least twice a week,
medium= less than twice a week but more than once a year,
and weak=once a year or less).

In his pioneering study, of the 54 people who found job through
a social contact, 16.7% found their job through a strong tie,
55.6% through a medium tie and 27.8% through a weak one.
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The Strength of Weak Ties'

Mark 5. Granovetter
Johns Hopkins University

1360 AJS Volume 78 Number 6

In a random sample of recent professional, technical, and managerial job
changers living in a Boston suburb, I asked those who found a new job
through contacts how often they sew the contact around the time that he
passed on job information to them. I will use this as a measure of tie
strength.'® A natural a priori idea is that those with whom one has strong
ties are more motivated to help with job information. Opposed to this
greater motivation are the structural arguments I have been making: those
to whom we are weakly tied are more likely to move in circles different
from our own and will thus have access to information different from that
which we receive.

I have used the following categories for frequency of contact: often = at
least twice a week; occasionally =— more than once a year but less than twice
a week; rarely — once a year or less. Of those finding a job through con-
tacts, 16.7% reported that they saw their contact often at the time, 55.6%
said occasionally, and 27.8% rarely (V = 54).'® The skew is clearly to the
weak end of the continuum, suggesting the primacy of structure over
motivation.
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A stylized time dependent labor market model:
Calvo-Armengol and Jackson

In the basic setting the model presents the following characteristics:

- job information arrives directly or through neighbors;

- information about new job opening arrives randomly to the agents
of the network;

- if the worker 1s unemployed she takes the job;

- if the worker 1s employed she select randomly an unemployed
neighbor and transfer the information;

- there 1s only one type of link (no difference between strong and
weak ties).

The system operates over time and final state at time #-1 1s the
starting state at the beginning of the next period

Calvo-Armengol, Antoni, and Matthew O. Jackson. "The effects of social networks on employment
and inequality." American economic review (2004): 426-454.
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The model therefore allows tracking the time dynamics of
unemployment 1n the system. One can therefore deduce
long-run steady state distribution of employment and the role
of network structure 1n 1t. It can also be able to model

the empirical observation of the duration dependence

(1.e. the fact that workers who have been unemployed for
longer times are less likely to find a work than workers who are
just recently unemployed).
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Model description:

- all jobs are identical and there 1s a single wage level;

- n agents are connected by an undirected network represented
by a n X n symmetric adjacency matrix g which has entries 0 and 1.

- time evolves 1n discrete periods indexed by +=1,2, ...,

- the n-dimensional vector s, describes the employment
status of agents at time 7. At the end of the ¢ period s, =1
indicates employment and s,=0 unemployment of agent i.

- each agent directly hears about a job with probability
al [0,1]
- the arrival of job information 1s independent across agents.
When agent i receives job information and 1s unemployed he or she
becomes employed. If he or she 1s already employed he or she
passes the information to a random unemployed agent (1f present).
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The probability that agent i learns about a job and this job
1s taken by agent j 1s

N\
[}
[}
[}

I
i
[ a ifs,,=0andi=]
| a .
p'i (S[-l):.l. 2 IfS,t-lzl , Sj,t-lzo’ and gij:1
: kis .1=0 gik
% 0 otherwise

At the end of the period some agents lose their jobs with
probability

bl [0,1]
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Long run steady state probability
a) Isolated agent @

Let us indicates the long run steady state probability of an agent
to be employed as u

For the 1solated agent

m=(1- b)(m+a(l- m)

where (1-H)u 1s the probability of being employed and not
loosing the job and a(1-b)(1-p) is the probability of being
unemployed, getting a job and not loosing it.

Therefore /7= b

1+(1- b)a
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The case ofadyad @—@

The steady state distribution can be obtained in terms of the
probabilities p,, 1, and p,. Where p, 1s the probability that no
agent of the dyad 1s employed, p, 1s the probability that one agent
of the dyad 1s employed and L, is the probability that both agents
are employed.

The relations among these variables are given by the following

equations

® 9 Z:‘e (1- a+ab)2 (1- a)zb(l- b) +b’ o ?aeng 9
g n :=g 2a(1- b)(1- a+ab) (1- b)((1- a)” (1- 2b)+2b) 2b(1- b) :g m :
Emss Sy pg)ey @y 27
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Let us consider in detail the relation

m=a (L b)’ m+(1- (1- &)°)(L- b)’ m+(1- b)’ m
The steady state probability i, of a dyad showing employment
for both agents is given by

a’(1- b)’ m
which 1s the probability that both agents were unemployed, get
employed and both stayed employed, plus

[1- (1- &)°)2- b)° 12

which is the probability that one agent was employed and the
unemployed receives an offer of employment directly or through
the already employed and both stay employed, plus

(1- b)" 2
probability that both agents were employed, and stayed employed
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The solution of the linear systems can be worked out
but 1t 1s quite cumbersome.

geng 6 %e b2(1+(1- b)(1- a)z)/x ?
¢ m+=¢ 2a(l-b)(1+(1- b)(1- a))/X =
& 7 s é a* (1- b)°((1- a)(3- a)(1- b)+1)/ X é
where

X =1 (L+(1- b)(L- a)°) +2a(L- b)(1+(L- b)(2- &)
+a2(1- b)?((1- a)(3- a)(1- b)+1)
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Therefore the network type has an impact on the average
employment rate and on the correlation of employment of pairs.

For other different network shapes it 1s difficult to analytically
estimate the steady state of the unemployment rate but such
information can be obtained by numerical simulations

For example for the following cases Calvo-Armengol and Jackson
obtain when a=0.100 and b=0.015

® ® O ® O ® Q@ (3

@ @ @ @ @ @ @ @

probability probability probability probability
1 unemployment 0.132 1 unemployment 0.083 1 unemployment 0.063 1 unemployment 0.050
corr(1,2)=0.041 corr(1,2)=0.025 corr(1,2)=0.025
corr(1,4)=0.019 corr(1,4)=0.025
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By investigating a more structured network Calvo-Armengol
and Jackson found

Unem. rate
0.050 Unem. rate

0.048
The degree of each node 1s 3

The parameters of the model for this simulation are a=0.100 and
b=0.015
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A system highly studied in econophysics 1s the international
trade network (also called world trade web).

Nodes are countries

RUSa ‘
Edges are directed and weighted UKG, . M.ﬁ.. _FRN
according to the amount IND W"""W *{%

in dollars of I ‘A;A"“;#},.

imported or e~
exported  CAN e
goods -

Fig.5 A partial visualization of the original weighted ITN (W). Thickness of links is proportional to their
weight. Only the largest 1% of links are shown. Node sizes are proportional to country’s GDP. Node shapes
represent the continent which the country belongs to (Circles: America; Empty Squares: Europe; Upright
Triangles: Asia; Crossed Squares: Africa; Reversed Triangles: Pacific)

Fagiolo, G., 2010. The international-trade network: gravity equations and topological properties.
Journal of Economic Interaction and Coordination, 5(1), pp.1-25. 82



Most of the
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FIG. 1. Cumulative in- and out-degree distributions, P (k;,) and
P_.(k,,), and undirected P_.(k) corresponding to the import and
export world trade web. The solid line is a power law fit of the form
P_(k)~k? ! with y=2.6=0.1. The cumulative distribution of the
equivalent random network with the same average degree is also
shown. Inset: cumulative distribution for the WIT'W with reciprocal
edges.
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FIG. 2. Clustering coefficient of single countries as a function of  FIG. 3. Average in (out, undirected) nearest neighbors degree as
their degree for the undirected version of the WTW. The solid line a function of the in (out, undirected) degree of the vertex. The solid
is a power law fit of form c¢,~k~“ with @=0.7%0.05. Inset: av- line is a fit of the form (k,,(k))~k~ "¢ with v,=0.5+0.05. Inset:
erage clustering coefficient, as a function of the degree, for the the same for the WTW with reciprocal edges.

WTW with reciprocal edges.

Serrano, M.A. and Boguiia, M., 2003. Topology of the world trade web. Physical Review E, 68(1),
p.015101.
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One way to measure the "assortativity" of a network is through
the average nearest neighbor degree (or in the weighted case
strength)

H %‘
Assortative networks Disassortative networks

nn é'j(p'j_l_pji)kj — klkJ
W= kK

The international trade network 1s disassortative. What about
comparing this stylized fact with a "null" model?
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The first step is to clearly identify the null model.

In the simplest case the unweighted network 1s considered and

a good random "null" model is the so-called "configuration model".
The configuration model 1s just a network model characterized by
the same degree sequence as the one investigated but with

links randomly defined.

A configuration model is usually numerically investigated.

. 5. Masiov et al | Physica A 333 (2004 529540}
In the numerical approach

random realizations of the \J \ [ -
. s @ > @ 5@ b

configuration model are / \\H N\

. F \'._ N
obtained through the repeated a.*’ /AT N\

. . . . C . ' . C
application of the rewiring /N N VN FAN
procedure / partners /

Maslov, S., Sneppen, K. and Zaliznyak, A., 2004. Detection of topological patterns in complex
networks: correlation profile of the internet. Physica A333, pp.529-540.
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There are also analytical approaches based on the maximization of
an Entropy. This approach estimates the set of graphs G such that
the P(G) subject to some specified constraints {C_} maximizes

the entropy S=. é P(G) n P(G)
G

The formal solution to the entropy maximization problem can be
written 1n terms of the so-called Hamiltonian H(G) providing the
"energy" or fitness associated to a given graph G

H(G)=a a.C.(C)

The maximum entropy is obtained when
- H(G)

P(G)="° with Z=ge"®
Z G

Squartini, T., Fagiolo, G. and Garlaschelli, D., 2011. Randomizing world trade. I. A binary network analysis.
Physical Review E, 84(4), p.046117.
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The analytical approach provides results such that the ensemble
average of each constraint C, 1s equal to the empirically observed
value whereas the numerical rewiring procedure guarantees that the
observed value 1n the null model is exactly equal to the empirically
observed one. The results of the two approaches converge for large
networks.

One plus of the analytical approach 1s that 1t works both for
unweighted (called by the authors "binary") and weighted networks.
The rewiring procedure 1s not unique and less well defined in
weighted networks. In both cases the degree sequence is usually
not controlled.

Squartini, T., Fagiolo, G. and Garlaschelli, D., 2011. Randomizing world trade. 1. A binary network analysis.
Physical Review E, 84(4), p.046117.

Squartini, T., Fagiolo, G. and Garlaschelli, D., 2011. Randomizing world trade. II. A weighted network
analysis. Physical Review E, 84(4), p.046118.
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Comparison with a maximum entropy null model in the

International Trade Network

unweighted
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FIG. 1. (Color online) Average nearest-neighbor degree k" ver-
sus degree k; in the 2002 snapshot of the real binary undirected ITN
(red points), and corresponding average over the maximum-entropy
ensemble with specified degrees (blue solid curve).
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FIG. 9. (Color online) Total average nearest-neighbor strength
ot versus total strength 51 in the 2002 snapshot of the real
weighted directed ITN (red, upper points), and corresponding average
over the null model with specified out-strengths and in-strengths
(blue, lower points).

Squartini, T., Fagiolo, G. and Garlaschelli, D., 2011. Randomizing world trade. I. A binary network analysis.

Physical Review E, 84(4), p.046117.

Squartini, T., Fagiolo, G. and Garlaschelli, D., 2011. Randomizing world trade. II. A weighted network

analysis. Physical Review E, 84(4), p.046118.



An investigation performed yearly over a long period of time
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Fig. 3 The binary-directed WTW: Pearson correlation coefficient between observed and null-model node
ANND. Top-left: IN-IN ANND. Top-right: IN-OUT ANND. Bottom-left: OUT-IN ANND. Bottom-right:
OUT-OUT ANND

After 1965 the null model explain quite well the assortativity of the
network



A dlfferent conclusmn 1S reached for the Welghted ITN
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Fig.10 The weighted-directed WTW: average nearest neighbor strengths and 95 % confidence bands. Red:

observed quantities. Blue: null-model fit. Top-left: IN-IN ANNS. Top-right: IN-OUT ANNS. Bottom-left:
OUT-IN ANNS. Bottom-right. OUT-OUT ANNS (color figure online)

Fagiolo, G., Squartini, T. and Garlaschelli, D., 2013. Null models of economic networks: the case of the
world trade web. Journal of Economic Interaction and Coordination, 8(1), pp.75-107.



Is information about preferential trading and/or indirect trading
present in the weighted international trade network?

The comparison with the null hypothesis 1s suggesting a
positive answer.

Several filtering methods have been devised to detect the
links that are highly informative in characterizing the system
and/or in detecting clustering of nodes (called communities
in network science) and over-expression of small sub-graph
(called triads or motifs).
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