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During the onset of the subprime financial crisis of 2007-2008

a key role was played by the Interbank market.

» August 9th, 2007 — BNP Paribas limits withdrawals,

» March 16th, 2008 — JP Morgan announces Bear Stearns acquisition,

» September 15th, 2008 — Lehman Brothers files for bankruptcy, and

» October 9th, 2008 — First effective day of interest on reserve balances.

Figure 1. Daily amount ($ billions) and daily fed funds rate
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Afonso, G., Kovner, A. and Schoar, A., 2010. What happened to US interbank lending in the financial crisis?
Vox.

Afonso, G., Kovner, A. and Schoar, A., 2011. Stressed, not frozen: The federal funds market in the financial
crisis. The Journal of Finance, 66(4), pp.1109-1139.



The interbank market
has been investigated
with tools of network
science since 2004

Boss, M., Elsinger, H., Summer, M.
and Thurner, S., 2004. Network
topology of the interbank market.
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Quantitative Finance, 4(6), pp.677-684.
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FIG. 1: The banking network of Austria (a). Clusters are
grouped (colored) according to regional and sectorial orga-
nization: R-sector with its federal state sub-structure: RB
yellow, RSt orange, light orange RK, gray RV, dark green
RT, black RN, light green RO, light yellow RS. VB-sector:
dark gray, S-sector: orange-brown, other: pink. Data is from
the September 2002 L matrix, which is representative for all



After the subprime crisis a series of studies have investigated
the systemic risk associated with the interlinkages observed in the
interbank market.

One of the most used model is the Eisenberg-Noe model

In this model banks are nodes and the links between pair of nodes
are defined by a n x n liabilities matrix P where p;=0 represents
the payment due from bank 1 to bank j. R e,

...................

In addition to the interbank
obligations each node holds
outside (to the network)

assets ¢. and outside
liabilities b,

Fig. 1. Node i has an obligation p; to node j, a claim p,; on node k, outside assets c;,
and outside liabilities b;, for a net worth of w;.
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The net worth of each bank 1s

outside assets outside liabilities

\ \
W; =¢ +Ej¢l.pji +b, +Ej¢ipij
/7 e

interbank assets interbank liabilities

When the net worth goes at or below zero the bank goes
bankrupt and the connected (and also disconnected) banks
feel an impact through two basic distinct channels.

Eisenberg, L. and Noe, T.H., 2001. Systemic risk in financial systems. Management Science, 47(2),
pp.236-249.

Glasserman, P. and Young, H.P., 2015. How likely is contagion in financial networks?.
Journal of Banking & Finance, 50, pp.383-399.
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1) spillover or "domino" effect. This 1s just the spreading
of the financial distress due to the losses felt by other banks
due to the impossibility of the failed bank to fulfill its obligations.

2) fire sales. The triggering of a fire sale can change the
mark-to market value of the portfolio of assets held by the
distressed bank and this can change the asset value of all
other banks having portfolios overlapping with the one of
the distressed bank.

Most of the studies have considered only one of these channels
whereas typically both are present in reality.
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The first study about domino effect

Random
Interbank
network

expected number of defaults

Figure 6. Connectivity, capital buffers and the expected number of defaults.

Gai, P. and Kapadia, S., 2010, March. Contagion in financial networks. In Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences (p. rspa20090410).
The Royal Society.
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Empirical characterization of the interbank market

- Different network models considered;

- Problems related to the empirical characterization;

- Trust building and time evolving trust relation in the
interbank market.
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The topology of the interbank market has been described as
compatible with two classes of network models:

- scale free networks;

- core-periphery networks.
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The concept of core-periphery network structure originates
in social networks. Examples are:

- Study of national elites and collective action (Laumann and Pappi,
1976; Alba and Moore, 1978),

- interlocking directorates (Mintz and Schwartz, 1981),
- scientific citation networks (Mullins et al., 1977; Doreian, 1985),
- proximity among Japanese monkeys (Corradino, 1990).

- Laumann, E.O., Pappi, F.U., 1976. Networks of Collective Action: A Perspective on Community Influence
Systems. Academic Press, New York.

- Alba, R.D., Moore, G., 1978. Elite social circles. Sociological Methods and Research 7, 167—188.

- Mintz, B., Schwartz, M., 1981. Interlocking directorates and interest group formation. American
Sociological Review 46, 851-868.

- Mullins, N.C., Hargens, L.L., Hecht, PK., Kick, E.L., 1977. The group structure of cocitation clusters: a
comparative study. American Sociological Review 42, 552—-562.

- Doreian, P., 1985. Structural equivalence in a psychology journal network. American Society for
Information Science 36, 411-417.

- Corradino, C., 1990. Proximity structure in a captive colony of Japanese monkeys (Macaca fuscata fuscata)
an application of multidimensional scaling. Primates 31, 351-362.
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The first formalization of the core-periphery structure was done by
Borgatti and Everett?

S.P. Borgatti, M.G. Everett / Social Networks 21 (1999) 375-395

.
In a core-periphery network

one observes a core of highly \2 /
connected nodes and a set of

nodes that are connected to \ 1‘ \ /
some or all element of the [

core and poorly connected

among them. / /

10 9

Fig. 1. A network with a core /periphery structure.

YBorgatti, S. P., & Everett, M. G. (2000). Models of core/periphery structures. Social networks, 21(4),
375-395.
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In their original paper Borgatti and Everett use the adjacency
matrix to explain the concept.

The previous example of Idealized core-periphery
core-periphery network network
1 2 3 45 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
1 1t 1 1]/1 0 0 0 0 O 1 1 T 1 1 1 1 1
2 | 1 1t 10 1 1 1 0 0 2 |1 11 1 1 1 A
31 1 10 0 01 1 0 301 1 Tt 1 1 1 1 1
401 1 1 1 0 0 0 0 1 401 1 1 T 1 1 1 1 A
5(1 0 0 1 0 00 0O 501 1 1 1 0 00 0 O
6{0 1 0 0/0 0 0 0 O 6|1 1 1 1]0 0 0 0 O
7l0 1 0 of0 0O 0 0 0 711 1 1 1|0 o0 0 0 0
g8lo 1 1 0|0 0 O 0 0 g1t 1 1 1[0 0 0 0 0
9/0 o0 1 o|l0 0 0 O 0 91 1 1 1/0 0 0 O 0
10/0 0 0 1|0 0 0 O O 101 1 1 1/0 0 0 0 O
Table 1 Table 2
The adjacency matrix of Fig. 1 Idealized core /periphery structure
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Everett and Borgatti introduced a few measures of core-periphery
structure. The most basic one is the following:

0= Eaijéij
i

where A is the adjacency matrix of the real network and A is the
1s the adjacency matrix of an idealized core-periphery structure
defined as

1 1fc. =coreorc.=core
0. =+ ’ g

9 .
0 otherwise
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Is core-periphery structure indicating a deviation from
random matching? Short answer 1s "not always".

In fact Chung and Lu (2002) showed that power-law random
graphs with degree distribution proportional to kP with exponent
p in the interval [2,3] almost surely contain a dense subgraph
(i.e. a core) that has short distance to almost all other nodes.

It 1s therefore important to qualify whether the presence of a
core 1s related to aspects of the network settings or just consistent
with a power-law null model.

Chung, Fan, and Linyuan Lu. "The average distances in random graphs with given expected degrees."
PNAS 99 (2002): 15879-15882.
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Petter Holme (2005) proposed a more general core-periphery
coefficient taking into account a comparison with a corresponding
configuration model

The new definition consider as the basic cluster (core) a k-core
(Holme describes it as "the most rudimentary cluster definition").

A k-core of a a
connected
component is . \</ /

the subnetwork { L [ %/ |
obtained after all >,/ @ |

vertices of degree v <

less than k have oo X

been removed i

In the search of k-cores a sequence of k-cores 1s obtained.

Holme, Petter. "Core-periphery organization of complex networks." Physical Review E 72 (2005): 046111.
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Core-periphery structures in directed networks

P. CSERMELY ET AL.

periphery
periphery core high variability/
high variability/ low variability/  gyolvability, fewer
evolvability, fewer evolvability, more constraints,
constraints, constraints, more more plasuc
more plasnc rigid, efficient l

can be multiplied
in modular networks

H_/

‘in” and ‘out’ are combined in undirected networks

FI1G. 1. General features of core/periphery network structures shown by the example of the bow-tie architecture of directed net-
works. The ‘in’ and ‘out’ components of network periphery refer to the fan-in and fan-out segments of bow-tie networks contain-
ing source and sink nodes, respectively. These segments of network periphery are combined in undirected networks. The network
periphery has higher variability, dynamics and evolvability, has fewer constraints, and is more plastic than the core. Network
cores facilitate system robustness helping the adaptation to large fluctuations of the environment, as well as to noise of intrinsic
processes. The network core can be regarded as a highly degenerate segment of the complex system, where the densely inter-
twined pathways can substitute and/or support each other. The network core has lower variability, dynamics and evolvability, and
is more rigid and more efficient than the periphery. Core structures may be multiplied in modular networks. Adapted from Tieri
etal.[13].



By using information on over 200 million pages and 1.5 billion

links of 1999 data, Broder et al provided an overview of the structure
of the WWW by dividing the web into a few large pieces and by
showing how the pieces fit in a stylized way.

f Central core

> [ 56 million pages

Main finding:

- the web contains a giant
strongly connected

; _ﬂ component, all major
o web pages can mutually
reach one other;

Tendrils and tubes
44 million pages

JAndrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan,
Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the Web. In Proc. 9th

International World Wide Web Conference, pages 309-320, 2000. 17



A recent study focusing on the core-periphery structure?

Economic motivation:
- the detection of a tiering structure in the interbank market
(1.e. an organization in layers).

Working hypothesis:

The banks in the market are partitioned into two sets based on
the type of their bilateral relations with each other

(1) top-tier banks lend to each other,

(i1) lower-tier banks do not lend to each other,

(111) top-tier banks lend to lower-tier banks, and

(1v) top-tier banks borrow from lower-tier banks.

ICraig, B., & Von Peter, G. (2014). Interbank tiering and money center banks. Journal of Financial
Intermediation, 23, 322-347.
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Craig and von Peter describe the system in terms of a blockmodel
with a set of top-tier banks (the "core" (C)) and a set of lower-tier
banks (the "periphery"” (P)).

Formally the block model is defined in terms of the following
adjacency matrix M

1 RR
CR 0

cC CP
PC PP

M=

where RR 1s a regular block which contains at least one link in
every row. CR is a column regular matrix with at least one 1 in
every column.

Feb 5th, 2016 Perm Winter School 2016



Fitting a core-periphery network model to the empirical
adjacency matrix.

Craig and von Peter define the following function as error score

e.te, +e, t+e,
225,
i

where e, 1s an error in the core, ¢, in the periphery, e, (¢,
in the interlinkages between core periphery (periphery core). E;;
1s 1 when an edge is present between node i and j in the

empirical network and O otherwise.

€ =

The optimal partition of nodes in core-periphery is the one found
for the model M with the lowest error score.
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Stylized examples of a model and of diagonal and off-diagonal block
CITOTIS Model Diagonal-block errors Off-diagonal-block errors

Fig. 1. Stylized example of an interbank market. The left panel illustrates a perfectly tiered interbank structure in a stylized
interbank market comprising 8 banks. The arrows represent the direction of credit exposure, e.g. bank D lends to A. The middle
and right panels depict examples of networks that are not perfectly tiered.

"o 1looo o core {A,B,C} core {A,B}
101/00010
11 0[/00 001 5
1 RR 1 00[/00000 _ . e =
(CR 0>_ 01 0/00O0O0TO eCC_l’ pp_l PP
00 1/00 000 _
01 0[(00O0O0TO 0 €=2/13 6—2/12
0 00f00OOGOO
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Empirical investigation of the German banking system

- bilateral interbank positions between more than 2000 banks,

- quarterly analysis during the time period from 1999 Q1 to 2012 Q3,

- one of the largest banking systems in the world with assets totaling
EUR 7.6 trillion at the end of 2007,

- the number of active banks in the interbank market equals
1732 + 85 (mean + SD),

- the set of banks comprises, on average, 40 private credit banks,
400 saving banks, 1150 credit unions, and 200 special purposes
banks,

- no distinction 1s done about the maturity of the credit relationships,

- the value of the credit relationships is not used to detect the
core-periphery model but it 1s used to interpret it.
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Empirical results about a representative pre-crisis mid-sample
quarter (2003 Q2).

Out of 2182 banks, 1802 are active in the interbank market. 1671 as
intermediaries (1. e. lending and borrowing), 67 as lenders only and
64 as borrowers only.

Finding the optimal model M by numerical search is a large-scale
problem in combinatorial optimization. Exhaustive search cannot be
performed. Craig and von Peter use a sequential optimization algorithm.
It 1s a type of greedy algorithm starting from a random initial partition
and performing optimization by switching nodes from the core to

the periphery and vice versa until the error score 1s minimized.
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Using this numerical procedure authors found fpr 2003 Q2 an optimal
model with a core consisting of 45 banks. This 1s 2.7% of
intermediaries.

# banks = 2182
# active = 1802

Borrowers

The error score was 0.122 (i.e. 12.2% of the links of the networks
were mismatched (2406 of 19720).
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The statistical fit of the core-periphery model is robust and
consistent over time

B. Craig, G. von Peter/]. Finan. Intermediation 23 (2014) 322-347
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Core size (# banks)
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Fig. 3. Structural stability over time. The figure shows a quarterly time series of the size of the estimated core and the total error
score expressed as a percentage of links as in Eq. (3), for the German interbank network.

Stability and consistency is observed also across the 2007 onset of
financial crisis.
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It 1s also worth noting that the composition of banks within the core
(and therefore in the periphery) remain stable across quarters.

In fact, the conditional probability of observing a given bank in a set
s also 1n the set s' of another quarter 1s equal to

core per. out

core 0931 0.060 0.009
per. 0.002 0.990 0.008

out 0 0 1

P(s'|s)=

The state out describes the disappearance of banks due to
failures and mergers.
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The bulk of bilateral relationships and credit exposures in the
interbank market involves banks of the core.

Links per block (number):

Credit exposures (EUR billion):

1297

5135

11533

1723

321.2

442.0

147.8

17.0

or

or

6.6% | 26.1%
58.5% | 8.8%
34.6% | 47.6%
16.0% | 1.8%

Banks of the periphery obtains 96% of the borrowing through EUR 442
billion in credit supplied by the core. Periphery provides EUR 147.8

billion to the core. The credit exchange between banks of the periphery
1s just 1.8% of the global credit volume exchanged.

Feb 5th, 2016

Perm Winter School 2016
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By defining the credit volume intermediated by bank i as

Int.=min(borrowed. lended.)

The credit volume intermediated by the banks of the core 1s 75% of
the total credit volume intermediated. In fact

E Int,

iEcore — O 75

This specialization correlates with bank size but it 1s not only
explained by the size attribute.
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The relationships periphery banks maintain with core banks are in
large extent exclusive and persistent over time.

63% of periphery banks borrow either from none or one single core
bank (data are referring to the 2003 Q2 reference quarter but are
representative of all the quarters). 96,7% of linkages that periphery
banks use to borrow from core banks persist across quarters

(91.4% on the lending side). If one does not condition on the credit
side 93.2% of linkages present in one quarter are still present in the
following one.
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Periphery borrowing from core Periphery lending to core

2000 1500
1500¢
1000¢
1000¢
500
500
0 . . . 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Core borrowing from core Core lending to core
25 . : . 20 . . :
20t 15|
15t
10}
10}
5| S
0 . 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 4. Dependency on the core. The figure is based on a dependency ratio, the percentage of each bank’s lending and borrowing
(in value terms) that it directly transacts with core banks. Each histogram counts the number of banks who rely on core banks to
the extent defined by the percentage brackets shown on the x-axis. The upper panels show periphery banks, the left panels
focus on borrowing (the right panels on lending).
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The first study on the interbank network had interpreted the
degree distribution as compatible with a scale free

. . . 10 v
distributior

® slope= -0.61557

slope= -2.0109

10° 10' 10° 10
degree

FIG. 3: Empirical out-degree (a) in-degree and (b) distri-
bution of the interbank liability network. In (c) the degree
distribution of the interbank connection network is shown.
All the plots are histograms of aggregated data from all the
10 datasets.

Boss, M., Elsinger, H., Summer, M., & Thurner 4, S. (2004). Network topology of the interbank market.
Quantitative Finance, 4(6), 677-684.
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How the core-periphery model compare with basic models of

random networks?

1000
900
800
700
600
500

Frequency

400
300
200
100

B. Craig, G. von Peter/]. Finan. Intermediation 23 (2014) 322-347

| | | | | | | | |
1000 Scale-free networks .
1000 Random |7
German graphs |
interbank
market -
| l | | | | | | | | | |
10 20 30 40 50 60 70 80 90 100

Normalized error score (in % of links)

Fig. 7. German fit against simulated error score densities. This figure compares the total error score from fitting the tiering
model to the German interbank network (12.2% of links, shown as an arrow) to the normalized error scores, as defined as in Eq.
(3), from fitting two types of random networks of the same dimension. The red bars show the histogram of error scores from
fitting 1000 scale-free networks, whereas the blue bars represent the histogram from fitting 1000 Erdos-Rényi random graphs.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



What characterize a core bank?

Craig and von Peter assembled bank variables for the 1802 active
banks of the 2003 Q2 reference quarter.

These data were assembled by using monthly balance sheet data
collected by the Bundesbank's statistics department.

These bank variables were used as regressors in a probit framework
where the binary dependent variable 1s core membership defined as
b=1 when the bank i 1s a core bank and 5,=0 otherwise.

Pr(Y =1|X)=®(a+Xp)

where @ 1is 18 the cumulative distribution function of the standard
normal distribution.
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Craig and von Peter investigate:

- observable measures of bank size (column 1 of the table of results),
- single network variables (column 2),

- measure of bank specialization (column 3).

The table shown in the next slide summarizes the results of the
probit regression.
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Table 1
Predicting the core of a network.

Regressing pr(i ¢ core) on the Size Network position Specialization
variables:
1a 1b 1c 2a 2b 3a 3b
Constant -19.36"" —-18.83"" —-1547" -2.56" —4.33" -1.57"" -11.16"
Bank size 1.884""
(0.0046)
Intrinsic size 0.835"
(0.0010)
Interbank position 1.063""
(0.0013)
Intermediation 1.654" 1.130"
. (0.0001) (0.0002)
Specialization 1 (saving banks) ~0.164 —0.851°
) (-0.0179) (-0.0011)
Specialization 2 (Cooperative banks) ~1.252" -1.048"
(-0.0602) (-0.0012)
Dealer 1.453" -1.111
(0.1520) (—0.0000)
International 1.403"" -2.221
(0.1420) (-0.0000)
Liquidity ratio -40.62"
(—0.0063)
Capital ratio —2.795
(—0.0043)
Betweenness 58.12"
(23.18)
Systemic importance 4737 3.997
(0.1193) (0.0006)
Observations 1783 1783 1783 1802 1802 1783 1779
Pseudo-R*in % 56.7 59.0 57.9 65.4 47.5 36.6 66.8
Correctly classified % 95.6 95.6 96.7 99.2 98.3 97.8 96.7
Prob(c|C) sensitivity 64.4 66.7 82.2 82.2 60.0 37.8 77.8
Prob(c|P) core false 3.57 3.62 2.96 0.34 0.74 0.69 2.83

35




The results of the previous table show that network position 1s
predictable from bank-specific features.

Core banks are active at national and international level and provide
a broader range of financial services than local or specialized banks.

Core banks carry out large transactions and perform a large fraction
of intermediation. Craig and von Peter conclude that "Banks in the
core .... can therefore be regarded as money center banks" ,1.e.

large banks dominating wholesale activity in money markets. These
banks often provide clearing services and corresponding banking
services and act as dealers in a broad range of markets.
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In several cases bilateral positions are unknown whereas
aggregate positions of some (economic) actors are reported.

This 1s quite common in the case of the Interbank market.

From balance-sheet the total interbank assets A, and liabilities
L. of each bank i are known whereas bilateral positions are
unknown (in some cases also to their national banks).

26 Nov, 2015 Lecture 22 — Budapest 37



The standard approach in the economic literature 1s to estimate

the bilateral positions by using the method of maximum entropy.

The assumption underlying this method is that each economic
actor 1s looking for the maximal diversification of its credit
relationships and maximal spreading of the credit relationships
is provided by the maximum entropy solution.

Maximum entropy state 1s in fact the state associated with the
minimum specification of available information.

26 Nov, 2015 Lecture 22 — Budapest
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Let us call X;; the elements of the matrix representing gross
interbank positions. For each bank i

N
Interbank assets: A; = EXij

N
Interbank liabilities: L = EX ji

where the elements X;; of the matrix X represent the amount
bank i lends to bank j

26 Nov, 2015 Lecture 22 — Budapest
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In the maximum entropy method, a solution E;; is obtained for a
proxy of X;; by minimizing the entropy function

E;
E E In| —
i Oy

under the constraints
N
A=YE,

j=1

where Q;; are known bilateral exposures (when available)

26 Nov, 2015 Lecture 22 — Budapest
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In the simplest case when only the marginal distributions are known
and positive, the solution will be close to the approximation

El.]. x A L ;

note that this implies that the associated minimum entropy

network 1s typically a fully connected network (although
a weighted one).

Empirical observations show that the proxy obtained by
maximum entropy 1s quite different from what observed in
reality. In fact when the network of interbank positions is
monitored the detected empirical network 1s a sparse network
and not a fully connected one.

26 Nov, 2015 Lecture 22 — Budapest 41



Recently Anand, Craig, and von Peter have proposed an
alternative method to estimate the bilateral positions. They call

their method the minimum density (MD) method.

The economic assumption underlying this new method is that
there 1s a fixed cost ¢ to establish a credit relationship between

bank i and bank j. This assumption implies that the network
will result from the action each bank will take to minimize their

COStS.

K. Anand, B. Craig, G. von Peter, Filling in the blanks: network structure and interbank contagion.
Quantitative Finance (in press 2015), BIS working papers n. 455.
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The minimum density approach can be formulated as a constrained
optimization problem for the matrix Z

N N
Inzin CE E I[Zij>0]

i=1 j=1

N
NZ,=A Vi=12,..N

j=1

¥Z,=L, Vj=12,..N

26 Nov, 2015 Lecture 22 — Budapest 43



The optimization problem is performed by assigning penalties
for deviations observed from the marginals. The following
quantities are used during the optimization process.

AD,=|A->Z,
j
LD,=|L-YZ,
j
The optimization process maximizes the objective function
N N N
2 2
V(2)==c] 2 L, - El[al.ADi +8,LD; |
=1 J= 1=

where o, and 0, are optimizing parameters.

26 Nov, 2015 Lecture 22 — Budapest



Logical steps of the optimizing algorithm:

at each iteration a link (1,)) 1s selected with probability

P;; proportional to max{AD/LD;,LD,/AD,}.

the exposure Z; is loaded with the maximum value that

the (1,)) pair of banks can transact given their current asset

and liability positions, i.e., Zijzmin{ADi,LDj}.

* 1f adding this link the value of the objective function increases
V(Z. )>V(Z) the allocation i1s retained.

* 1n case the objective value function decreases the link 1s
retained with probability P(Z. ) prop. to exp[V(Z. )-V(Z)].

* otherwise the link 1s rejected.

* the process is iterated until the total interbank market has been

allocated.
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An 1llustrative example
Estimated Networks

Actual Data
True Network

A B CcC D E F G
A 0 3 1 0 0 1 2
B 2 0 2 0 0 0 1
C 1 1 0 0 0 1 0
D 1 0 0 0 0 0 0
E 0 0 2 0 0 0 1
F 0 0 0 0 0 0 0
G 0 1 0 0 0 0 0
L; 4 5 5 0 0 2 4

Observable Interbank Market

A B CcC D E F G
A
B
C
D
E
F
G
L; 4 5 5 0 0 2 4

26 Nov, 2015

B e o wkrkwouna P

e W e W N P

S

Maximum Entropy Solution

A B C D E F G
0 253 218 0 0 074 155
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Concentration of Value

The case of
interbank
positions in
Germany

Share of total value allocated to the largest links

Original Network X
= = = Maximum Entropy E -
Minimum Density Z
0 | 1 | | | 1 | | |
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Largest links (as a share of the number of links in X)
Figure 2: The figure shows the concentration of value on the largest links for the different networks. The x-axis ranks
bilateral linkages (in descending order of size) and expresses the first n links as a share of the total number of links
in the original network X (18,624). The y-axis shows the cumulative share of value allocated to the largest n links,
relative to the total interbank volume. The dots indicate at which point 100% of volume has been reached. For X this
is at unity, for Z this occurs at 0.185, whereas E needs 158 times the number of links in X before reaching 100% of
interbank volume.



Degree Distribution

10 T 10 T
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Figure 3: The figure displays the degree distribution in its cumulative form, showing the number of banks with a
degree greater than the number shown on the x-axis, on a double log scale. A straight line would indicate a Pareto
cumulative indicative of a power law distribution. The degree distribution of the original network X has been smoothed
to preserve the confidentiality of individual bank data, and shows averages at the end points, instead.



Network metrics

Network E X Z Y
Characteristic Max Entropy True Network Min Density Low Density

Density, in % 92.8 0.59 0.11 0.61
Degree (average) 1649 10.5 1.94 10.9
Degree (median) 1710 6 1 4
Assortativity -0.03 -0.53 -0.40 -0.32
Dependence when borrowing, % 12.2 84.7 97.3 93.4
Dependence when lending, % 7.2 45.1 97.4 87.2
Clustering local average, % 99.8 33.4 0.03 7.62
Core size, % banks 92.6 2.5 1.1 2.1
Error score, % links 14.6 9.2 41.2 35.7

Table 1: Comparing basic network features of benchmark estimates with those of the original German interbank

network.

In the case of the low density the second step of the algorithm

1s modified as

* the exposure Z;; is loaded with the maximum value that
the (1,)) pair of banks can transact given their current asset

and liability positions, i.e., Z;=\ min{AD;,LD;}

with A<l

26 Nov, 2015
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Different realizations of Y when varying A
Density of Y (% of potential links), left axis ® Minimum-Density Z
Size of core (% of banks), left axis © Original Network X
————— Dependency when borrowing (26), right axis

Figure 4: This figure shows three network features for 65 different low-density solutions ¥. The implementation here
sets A = 0.5 for the first £ links being filled by the algorithm and A = 1 thereafter, with & raised from 0 to 100,000 in
65 (unequally spaced) steps. The first realization (at & = 0) is the MD network Z with the network features shown as
red dots (as in Table 1). The black circles indicate the values for the original network X, plotted at the point where a
comparable low-density network Y reaches a density similar to X (at k=16,000).
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Interbank market: a study of the e-MID database
and an agent based model

- electronic transactions between 254 Italian banks;

- transactions are transparent;

- time period from January 1999 to December 2009;
- information about the "aggressor" (lender or borrower);
- overnight and overnight-long credit relationships;

- data analyzed in 3-maintainance periods (1-maintainance period
is about 23 trading days usually close to q1 calendar month).

YHatzopoulos, V., Iori, G., Mantegna, R. N., Micciche, S., & Tumminello, M. (2015). Quantifying
preferential trading in the e-MID interbank market. Quantitative Finance, 15(4), 693-710.

Yori, G., Mantegna, R. N., Marotta, L., Micciche, S., Porter, J., & Tumminello, M. (2015). Networked
relationships in the e-MID Interbank market: A trading model with memory. Journal of Economic
I Dynamics and Control, 50, 98-116.



Empirical analysesy of the e-MID database show evidence
of the networked nature of the interbank market

Lender aggressor or borrower
aggressor transactions

N

Lending banks
Borrowing banks

We performed a statistical validation
of the over-expression and
under-expression of repeated credit
transactions.

u.
o

‘ - -

b ~ =

YHatzopoulos, V., Iori, G., Mantegna, R. N., Micciche, S., & Tumminello, M. (2015). Quantifying
preferential trading in the e-MID interbank market. Quantitative Finance, 15(4), 693-710.
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We statistically validate the relationships between banks 1
(lender) and j (borrower) over a given time period.

Total # of transactions

# of

transactions
of bank i as a
lender

# of transactions
between the two
banks when i is
lender and j is
borrower

# of transactions of bank j as a borrower

Feb 5th, 2016 Perm Winter School 2016

What 1s the
probability
P(X N .M.,K)?
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Hypergeometric distribution

M] N-M
XN\K-X
P(X|N,M,K)=

N

K
p-value

OVER-expression:

UNDER-expression:

Multiple hypothesis test correction
1s needed

in order to control false positives
expected in multiple comparisons

Bonferroni correction

The threshold 0 must be divided
by the number N, of performed
tests: pg < O/N,

False Discovery Rate

correction
M\ N-M M\ N-M il
o) e
p=1_20 ( - ) p=§ ( - ) P.<3 6N,
k K P,<k O/N,

threshold 0: 5%, 1%, ...
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Lender aggressor transactions. Bonferroni network of the

3-maintenance period 10-Sep-2008 / 09-Dec-2008
S

The different colors indicate the node membership to the partitions
detected by using the Radatool algorithm (unweighted option).
Red links are under-expressed links, while blue links are

i over-expressed ones.



Lender-aggressor dataset
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A model? for over-expressed bilateral credit relationships

Underlying idea: two banks are more likely to have a credit
relationship 1f they already had one(s) in the recent past.

Separate (but parallel) modeling of the lender-aggressor and
borrower-aggressor case.

Calibration of the model parameters on real data.

Yori, G., Mantegna, R. N., Marotta, L., Micciche, S., Porter, J., & Tumminello, M. (2015). Networked

relationships in the e-MID Interbank market: A trading model with memory. Journal of Economic
Dynamics and Control, 50, 98-116.
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An order to borrow is placed by a bank B, that is randomly selected
with probability:

p,(B.,t) prop to B(t)

Quantity B/*(t) is the number of transactions that bank B, has planned
to do in a time-window T),, as a borrower, in the lender-aggressor
transactions after 7 transactions already occurred in 7),.

A lender 1s then selected with probability

p,(B;-1|B,) = B (1)|w+N(B,.B,.1)|

Where B/%(t) is the number of transactions that bank B; has planned
to do in a time-window T),, as a lender after 7 transactions already
occurred in Tj,. N(B;,B;,t) 18 the total number of transactions in which
B; lent money to B; over the past O time-windows, in spite of the type
of transaction. w 1s a parameter, assumed to be equal for all the banks,
which represents a common level of attractiveness of borrowers.
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The probability that a lender-aggressor transaction occurs from j (the
lender) to i (the borrower) after ¢ transactions 1s

P(Bj’Bi»t)=pb(Bi’t)pl(Bj’t Bi)=
Bhia (1) Bj.’la (t)[w+ N(Bj,Bi,t)]

l

- B() > B(t)|w+N(B,B,1)]

k=1

lm III]I]I]IIIIIE

# Lenders

The distribution of B and
B! was assumed to be
Lognormal and the parameters
w and o of the Lognormal
distribution were estimated
from empirical data

# Borrowers
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Numer of links
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Calibration of the Q parameter from the empirical data
when setting w=1 (lagged Jaccard index between
networks of real data and simulations).

Table 1
Frobenius distance between the matrices of weighted lagged Jaccard indices between networks of real data and simulations (with w=1) of lender
aggressor and borrower aggressor transactions.

Memory Lender aggressor Borrower aggressor
Original Bonferroni Original Bonferroni
Q=1 0.91 1.61 0.66 1.57
Q=2 0.45 1.75 0.36 141
Q=4 0.73 1.91 0.52 1.49

The best choice is O0=2
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Results of the simulation after calibration (w=1, O=2) and
comparison with empirical data

LENDER aggressor - links BORROWER aggressor - links
original network original network

T T T T T T @—@ real data = = T T T T T T @—@ rcal data 3
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3 000 | E

1 2000 F- =

- oE 3
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We quantify the similarity of two networks by using the weighted
Jaccard index between networks, net, and net,,

N | 2]
. mm_wi’j,wl.,j_
— -
max|w; ;Wi ;.

Jy (netl,netz) =

where w/, ; 1s the weight of link i,j in the first network, net,, and
w2, ; is the weight of link i,/ in the second network, net,.

For an unweighted network J(net,,net,) reduces to the usual
Jaccard index

=\ElmE2\
[E,UE,|

Jy (netl,netz)
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Matrix of weighted Jaccard index between real data (left panels) and between simulations of our
model for w=1 and O=2 (right panels). Lender-aggressor transactions. Original networks (top
panels) and statistically validated networks (bottom panels).
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Bidirectional links in the original and Bonferroni networks

Table 3

Bidirectional links in real data and simulations with w=1 and Q=2.
Data type Original network Bonferroni network

Mean Std. Perc. Mean Std. Perc.

Lender aggr. (data) 2108 111.9 7.6 1.64 1.59 1.7
Lender aggr. (sim.) 2234 83.6 6.8 0.02 0.15 0.02
Borrower aggr. (data) 91.1 67.2 4.7 045 0.85 1.2
Borrower aggr. (sim.) 92.0 57.8 4.0 0.02 0.15 0.04

Our model 1s not able to explain the percent of bidirectional
links observed in Bonferroni networks
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3-motifs
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Fig. 9. The 13 isomorphic directed 3-motifs. The numeric code is the one used by the FANMOD program.
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Fig. 10. Number of three-maintenance periods (out of 44) in which each three-motif type (indicated in the horizontal axis) is over-expressed, under-
expressed, normally expressed, and not present in the original (left panel) networks associated with real data of lender-aggressor and with corresponding
lender-aggressor transactions from simulations of the model with w=1 and Q=2 (top left). Over-expressions and under expressions are obtained by
performing a multiple hypothesis test correction. The over/under expression of a three motif indicates that the corresponding p-value provided by
FANMOD was smaller than 0.01/(13 - 44), where 13 is the number of three-motif types and 44 is the number of three-maintenance periods investigated.
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