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Counterparty Risk

I Counterparty risk is an important determinant of corporate
risk and therefore credit spreads.

I We describe a model of financial networks that is suitable
for the construction of proxies of counterparty risk.

I With the U.S. supplier-customer network of public
companies, counterparties’ leverage and jump risk are
significant determinants of corporate credit spreads for
each supplier.

I Our findings are robust after controlling for several
idiosyncratic, industry, and market factors.



Supplier-Customer (SC) networks and Counterparty risk

Risks originate and propagate in a SC network through two
primary mechanisms.

1. Trade Credit Exposure:
I Trade credits are extended whenever payment is not on

delivery.
I Lender takes on a risk exposure, whose magnitude depends

on the size of the trade and the credit worthiness of the
borrower.

2. Future Cash Flow Risk:
I Strong ties along the supply-chain are valuable.
I Arise from sharing technical knowledge, investing in specific

equipment.
I Firms are co-invested in each others’ businesses.



Leverage and Jump

I The magnitude of network effects is substantial: for a given
firm, an increase of one standard deviation in the leverage
of its main customers leads to a widening of its credit
spread of 26 basis points on average.

I This is compelling when compared to the effect of a firm’s
own leverage: an increase of a standard deviation in a
firm’s own leverage widens its credit spread by 50 basis
points.

I A customer with higher leverage has on average wider
spreads and, hence, a higher implied probability of default.
This, in turn, reflects negatively on the supplier’s
prospects, and it eventually leads to a higher spread.



Modeling Networks

I Network Economics addresses two issues:
I Analysis of network effects;
I Process of network formation.

I We introduce a parametric framework for modeling
network effects.

I Study the market valuation of counterparty risk.



Networks and Graphs

I Networks can be represented by graphs;

I A graph g is a pair (V,E):

· V : set of vertices (i.e. nodes);
· E: set of edges (i.e. links).

I A graph can be

· Directed: uni-directional edges;
· Undirected: bi-directional edges;
· Weighted: each edge has a specific strength, quantified by a

real number — its weight.

I We assume g has no self-loops.



Adjacency Matrix

1

2

3

4

5

to

from


0 0 0 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0





Network Lag Operator

The adjacency matrix acts on vectors of vertex characteristics.
x: n-dimensional vector, s.t. xi is some property of node i.

I G: adjacency matrix of g.

I The entries of Gx are sums of neighbors characteristics:

(Gx)i =
∑
j∈V

Gijxj =
∑
j|i→j

xj ,

I G is a weighted adjacency matrix that is stochastic

(Gx)i =
∑
j∈V

Gijxj =
∑
j|i→j

Gijxj



Network Lag Operator

Gx =


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0



x1

x2

x3

x4

 =


x2 + x3

x4

x4

0





Walks and Powers of the Adjacency Matrix



The NARMA model

narma: Network Auto-Regressive Moving Average;

I A narma process of order (p, q) for y on a network g that
satisfies the equation

y =

p∑
i=1

αiG
iy +

q∑
j=0

βqG
jx+ ε ,



Economic Links and Counterparty Risk

I We study the network determinants of corporate credit
spreads;

I Customer-supplier network:

· Nodes: US public companies;
· Links: Supplier → Customer (from accounting data);

I Network effects as a proxy for counterparty risk.



The Model: Network Spillovers

CS i,t = α+ β Firmi,t + γ Customers i,t

+ δ1 S&P t + δ2 YieldCurvet + εi,t

I CS i,t is the credit spread for of firm i at time t

I Firmi,t is a vector of the firm’s characteristics:

Firmi,t = { lev i,t, ivol i,t, jumpi,t }

I Customers i,t is a vector of the customers’ characteristics:

Customers i,t = { (Gt · lev t)i, (Gt · ivol t)i, (Gt · jumpt)i }



Data

The data is combined from several sources. The analysis is
carried out on weekly data for the 2004-2009 period.

1. COMPUSTAT: customer segment files;

2. TRACE: bond transactions;

3. OptionMetrics: implied volatilities;

4. CRSP: stock prices.

5. DATASTREAM: bond characteristics, benchmark
treasuries;



Credit Spreads from TRACE

1. Sample: bonds with no optionality and fixed coupon;

2. Daily Yield: volume weighted average yield from
transaction data;

3. Yield Curve: linear interpolation of benchmark treasury
rates from Datastream;

4. Credit spreads are computed as differences from the yield
curve.



Leverage from Compustat and CRSP

For each firm i, we define firm leverage levi,t as

Book Value of Debt

Market Value of Equity + Book Value of Debt
.



Implied Volatility and Jump Measure from OptionMetrics

1. OptionMetrics contains the volatility surface constructed
via kernel smoothing on a fixed grid of maturities and
deltas for US equity option market.

2. A proxy for jump risk is the “smirk” of implied volatilities.

3. Following Yan (2010, JFE), we use near money puts and
calls to estimate implied volatility

ivol = 0.5
(
σimp
i,put(−0.5) + σimp

i,call(0.5)
)
,

and the slope of the volatility smile

jump = σimp
i,put(−0.5)− σimp

i,call(0.5) .



Economic Links from COMPUSTAT

1. COMPUSTAT Customer segment files contain the identity
of principal customers;

2. Since customer’s names are self-reported, matching a
customer’s name with a standard identifier is not
straightforward. Our procedure:

I first pass: exact matches;
I second pass: manual match of unmatched customers.

3. We identify 4,462 firms and 21,000 links (between 2003 and
2009.)

4. After matching the firms in the supplier-customer network
with the corporate bond trades in TRACE, with the bond
characteristics from DataStream, and dropping missing
observations, our final sample consists of 154 firms and
12,128 weekly observations.



Summary Statistics

Mean SD Min Max Obs

All Maturities (154 Firms)

Credit spread 2.926 3.115 .115 29.261 12128

Implied volatility
Firm .3618 .2283 .0856 2.3637 12128
Customers (all) .0606 .1255 0 2.0126 12128
Customers .2556 .1288 0.1072 2.0126 2694
S&P .1876 .0967 .0953 .6076 12128

Implied jump measure
Firm .0090 .0431 -.6022 .8817 12128
Customers (all) .0009 .0078 -.2642 .2813 12128
Customers .0039 .0148 -.2642 .2813 2694
S&P .0016 .0091 -.0395 .0355 12128

Leverage
Firm .3386 .2157 .0123 .9793 12128
Customers (all) .0570 .1508 0 .9992 12128
Customers .2440 .2275 .0008 .9992 2668

Weekly returns S&P .0010 .0268 -.1952 .1167 12128

Term Structure
r10 4.136 .6404 2.1 5.2 12128
slope 1.006 .9555 -.19 2.7 12128



January 2004–December 2009

Classical Models Network Spillovers

[1] [2] [3] [4] [5] [6] [7]

(intercept) -1.232 1.926 -1.553 1.910 -1.322 1.653 1.822
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

Firm

lev, β1 2.019 2.243 2.271 2.230 2.130 2.313 2.281
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ivol, β2 9.294 8.495 8.561 8.529 9.096 8.366 8.465
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

jump, β3 12.450 12.977 12.958 12.853 13.027 13.543 13.367
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Customers

lev, γ1 0.803 1.199 1.137
(0.104) (0.015) (0.030)

ivol, γ2 0.671 0.256 0.337
(0.140) (0.540) (0.457)

jump, γ3 22.547 21.344 20.630
(0.000) (0.001) (0.001)

S&P

ret, δ1,1 4.699 3.964 3.665
(0.000) (0.000) (0.000)

ivol, δ1,2 2.615 0.162 -0.294
(0.001) (0.819) (0.693)

jump, δ1,3 2.471 -1.430 -0.848
(0.556) (0.547) (0.736)

Yield Curve

r10, δ2,1 -0.681 -0.684 -0.641 -0.674
(0.000) (0.000) (0.000) (0.000)

slope, δ2,2 -0.128 -0.139 -0.126 -0.129
(0.012) (0.003) (0.015) (0.007)

Degrees of freedom 12124 12122 12121 12119 11175 11173 11170
R2 (adjusted) 0.683 0.693 0.689 0.694 0.690 0.698 0.699



Cross-Industry Effects

A common critique:

This model does not capture network effects but cross-industry
spillovers.

I Averaging over customers’ characteristic builds proxies for
whole industrial sectors

I We conduct a robustness check that rejects this hypothesis.



Cross-Industry Effects

I Control variables for industry and cross-industries;

I Customers =⇒ neighboring industries

I The model with industry effects is

y = β Firm + γ (G · Firm)︸ ︷︷ ︸
Firm and
Customers

effects

+ δ (S&P ,YieldCurve)︸ ︷︷ ︸
Market
effects

+ η Ind + φ (G · Ind)︸ ︷︷ ︸
Industry and

Cross-industry
effects

+ε



No Industries Industry Portfolios

0 12 17 30 38 48

(intercept) 1.822 1.545 1.357 1.526 1.916 1.839
(0.000) (0.000) (0.001) (0.000) (0.000) (0.000)

Firm

lev, β1 2.281 2.221 2.236 2.239 2.275 2.251
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ivol, β2 8.465 8.486 8.512 8.503 8.471 8.476
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

jump, β3 13.367 13.493 13.527 13.509 13.342 13.396
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Customers

lev, γ1 1.137 1.205 1.163 1.129 1.206 1.259
(0.030) (0.021) (0.030) (0.037) (0.022) (0.013)

ivol, γ2 0.337 0.097 0.237 0.338 0.142 -0.049
(0.457) (0.837) (0.643) (0.510) (0.785) (0.914)

jump, γ3 20.630 20.899 21.601 21.331 20.556 19.536
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Industry

ret, η1 0.003 0.002 0.008 -0.014 -0.003
(0.672) (0.840) (0.236) (0.012) (0.579)

vol, η2 -0.009 -0.010 -0.006 0.000 -0.001
(0.000) (0.000) (0.000) (0.846) (0.440)

Cross-Industry

ret, φ1 -0.048 -0.039 -0.035 -0.009 -0.022
(0.004) (0.001) (0.001) (0.239) (0.075)

vol, φ2 0.017 0.002 -0.001 0.002 0.005
(0.000) (0.648) (0.792) (0.133) (0.032)

Degrees of freedom 11170 11166 11166 11166 11166 11166
R2 (adjusted) (0.699) (0.701) (0.001) (0.701) (0.700) (0.700)



Conclusions

I The main objective of this paper is to evaluate the market
assessment of counterparty risk in supplier-customer
relationships;

I We study the network determinants of corporate credit
spreads and use network effects as an instrument for
counterparty risk.

I Counterparty risk is an economically and statistically
significant determinants of credit spreads.
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The problem

1

2

3

4

I A financial liability network of n economic agents.

I Described by a weighted directed graph. Vertices are
agents. A weighted arrow from i to j denotes agent i
lending to agent j and how much.

I Default caused by exogenous shock, e.g. unanticipated
liquidity demand external to network.



I The network (a), agents 2 and 3 hold one unit of asset each
from agent 1—e.g. two entrepreneurs borrowing from a
principal.

I In (b), one unit of asset is passed from agent 1 to 2, then
from 2 to 3—e.g. agent 2 can be a frictionless intermediary
between an entrepreneur and a principal.

1

2 3

1

1

(a)

1 2 3
1 1

(b)



If agent 3 defaults in network (a), he is removed from the
network. Agents 1 and 2 remain.

1

2 3

1

1 	
1

2 3

1

In network (b), agent 3 hold the only asset internal to the
network, his default causes the entire network to collapse.

1 2 3
1 1 	

1 2 3



I The default of an agent propagates through the network.

I A default is severe if it propagates through a large part of
the network, e.g. agent 3’s default is a more severe event
for network (b) than (a).

I Given a network of arbitrary liability structure, the default
of different agents have different severity.

How to quantitatively compare the severity of each agent’s
potential default in a given network?



What is wrong with simple accounting?

I Any proposed answer must be able to distinguish between
different liability structures. Simply looking at each agent’s
balance sheet does not achieve this. The same amount of
inter-agent liability can have different default-propagation
effects across networks.

1

2 3

1

1

1 2 3
1 1

In both networks (a) and (b), agent 3 has liability of 1
unit. In (a), his default removes only him from the network
while in b, his default causes the entire network to collapse.
These two events are not of the same severity.



What is wrong with simple accounting?

The liability profile of entire network also does not capture the
network structure.

1

2

3

4

1
1

1

1 2 3 4
3 2 1

These two networks have identical agent balance sheets:
{−3, 1, 1, 1}. The network structures are very different and
therefore so are the propagation effects.



A proposed solution

I We would like a notion that focuses on the severity of an
agent’s default in terms of implications for the
network—how much of the network does the agent take
with him when he defaults?

I We expect owing to a heavily in-debt creditor means more
severe implications of default than owing to a debt-free
creditor. A default on a heavily in-debt creditor is more
likely to propagate.

I We will start with an intuitive expression and drive toward
a precise graph-theoretical measure of severity.



A proposed solution

Instead of a simple sum (di = 1), one can envision attaching a
weight di to each agent i, for i = 1, · · · , n such that each di is a
weighted sum of agent i’s liabilities {aij , j = 1, · · · , n}

di =

n∑
j=1

aijdj , 1 ≤ i ≤ n.

This immediately captures:

I Agent i having higher debt increase his own weight di.

I For the same amount owed, di increases with d−i, the
weight of his creditors.

As an agent increases his own liability, both his own weight and
the weights of those who borrow from him increase.



A definition: network debt distribution

The equation characterizes d = (di) as an eigenvector of the
adjacency matrix A = [aij ], Ad = d, corresponding to eigenvalue
1. Allowing for a scaling factor λ gives Ad = λd. The entry
aij ≥ 0 is the amount i borrows from j.

Definition
Given a (strongly connected) financial network of n agents with
non-negative edge weights {aij , 1 ≤ i, j ≤ n}, let d be an
eigenvector of A = [aij ] corresponding to the positive eigenvalue
λ with maximum modulus. Normalize d so that

∑n
1 di = 1. The

vector d is the network debt distribution of the network. The
i-th entry di of d is the (relative) network debt of agent i.

(By modulus of a complex number we mean its length as a
two-dimensional vector.)



Comments on the definition

I Allowing for the scaling factor λ loses no information. The
normalization

∑n
1 di = 1 means we are interested in the

ratios di
dj

, i 6= j.

I Allowing for λ also ensures the existence of d. Ad = λd
always has solutions while Ad = d need not. An n× n
matrix (even with non-negative entries) have n complex
eigenvalues in general. 1 need not be an eigenvalue and,
even if it is, the corresponding eigenvector need not be
unique and positive.

I Choosing λ to be positive with maximum modulus ensures
there is a d with positive entries that is unique up to scale
(Perron-Frobenius theorem). So d is really a distribution
and well-defined.



Graph-theoretic perspective

In algebraic graph theory, λ and d are called the maximal
eigenvalue and maximal eigenvector of the graph. They capture
certain properties of the underlying graph. For example,

I The maximum clique problem: what the largest group of
agents who have liability relationship to each other?/what
is the largest group of economists who are co-authors with
each other? Answer: λ+ 1 is an upper bound on the
maximum clique size of the graph.



I The maximum clique problem cont’d
For example, the graph (k)

1

2

3

(k)

1

2

3

4 5

(l)

form a clique, and therefore has maximum clique size
3 = 2 + 1—its adjacency matrix 0 1 1

1 0 1
1 1 0


has maximal eigenvalue 2. In graph (l), vertices {1, 2, 3}
form a maximum clique.



Graph-theoretic perspective

I Google’s PageRank algorithm determines the ranking of
web-pages by computing the maximal eigenvector of the
internet. In the internet graph, an arrow from i to j
represents site i linking to site j. In the internet of n sites,
the maximal eigenvector (vi) is an n-dimensional vector
with positive entries. The vi’s provide a ranking of the
sites. A heavily linked site, e.g. www.themoscowtimes.com,
receives high ranking.



Is this a valid notion for financial networks?

I The Google example suggests that, for our context, a
highly leveraged agent should have high weights in the
distribution specified by d—an arrow from i to j means
agent i lending to agent j. However, does it reflect the
severity of default implications as intended?

I How does it behave when the liability structure is
perturbed, i.e. when an agent borrows more or reduces her
debt?

We check it against some stylized examples next.



Ring network

1

2

3

4

11

1 1

A=[aij ]=


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



I One unit of asset circulates among 4 agents.

I The eigenvalues of A are {1,−1,
√
−1,−

√
−1} with

maximal eigenvalue 1.

I Its network debt distribution is (14 ,
1
4 ,

1
4 ,

1
4).

I The distribution reflects that agents in this network are
homogeneous. The default of any agent have the same
severity. They all causes the network to collapse.



Star network

1

2

3

4

1

1

1

A=


0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0



I Agents 2, 3, and 4 holds one unit each from agent 1.

I The eigenvalues of A are {0, 0, 0, 0}.
I The network debt distribution is (0, 13 ,

1
3 ,

1
3).

I The default of each of the borrowers (agents 2, 3, or 4)
destroys 1

3 of the network.



Star network

I Changing the liabilities (edge weights) of the star network
while keeping the star structure does not change the
network debt distribution because the implication of
default is the same.

I For example, a star network with different amounts
borrowed:

1

2

3

4

3

5

7

A=


0 0 0 0
3 0 0 0
5 0 0 0
7 0 0 0


I The network debt distribution is the same, (0, 13 ,

1
3 ,

1
3).



Line network

1 2 3 4
1 1 1

A=


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0



I One unit of asset is passed successively from agents 1 to 4.
Agent 4 holds the only asset in this network.

I The eigenvalue of A are {0, 0, 0, 0}. The network debt
distribution is (0, 0, 0, 1).

I The entire network is dependent upon agent 4 to honor his
debt. If 4 defaults, it propagates through the entire
network.

I By our environment assumptions, the default of 3
necessarily means 4 have defaulted. Similarly for the
default of 4. Any default must originate from 4 in this
configuration.



Theorem
If agent i has zero liabilities, then his network debt is 0

Since di = λ
∑n

j=1 djaij , when aij = 0 for all j, di = 0.

The converse, however, is not true.

1 2 3 4
3 2 1

This line network has network debt distribution (0, 0, 0, 1). The
distribution is concentrated on agent 4, who is again crucial.
Any default in this network must originate from that of agent 4.



Theorem
In a (strongly connected) network of financial liabilities, suppose
agent i increases its liabilities. Let d and d′ be the network debt
distribution before and after the increase in agent i’s liability
profile respectively, then

d′i
di
>
d′j
dj
, ∀j 6= i.

In other words, if two networks N and N ′ are identical except
that a′ij ≥ aij for every j, agent i must have the most network
debt increase across the networks, in relative terms.

A network is strongly connected if for any pair of agents (i, j),
there is a directed path from i to j.



1

2

3

4

11 + ε

1 1

A=


0 1 + ε 0 0
0 0 1 0
0 0 0 1
1 0 0 0



For example, in the ring network, if 1 is liable to 2 for ε
additional units of debt, network debt distribution is, up to a
normalizing factor,

d = (λ3, 1, λ, λ2), λ = (1 + ε)
1
4 > 1.

λ is the maximal eigenvalue.



An explicit calculation for λ: the eigenvalues of the adjacency
matrix are solutions to the equation

det


λ −(1 + ε) 0 0
0 λ −1 0
0 0 λ −1
−1 0 0 λ

 = 0.

i.e. λ4 = 1 + ε. So the eigenvalues are (counting algebraic

multiplicity) {(1 + ε)
1
4 , (1 + ε)

1
4 , (1 + ε)

1
4 , (1 + ε)

1
4 }. In

particular, the maximal eigenvalue is (1 + ε)
1
4 . Eigenvalue and

eigenvector calculations can be done fast numerically.



I In the above example, as ε gets large, this distribution
approaches (1, 0, 0, 0) which is the network debt
distribution of the limit network (w).

I As ε tends to −1, the network configuration approaches the
line network (x) and network debt distribution behaves
correspondingly, converging to (0, 1, 0, 0).

1

2

3

4

01

0 0

(w) ε→∞
Weights in relative
terms

1

2

3

4

1

1 1

(x) ε→ −1+



In other words, network debt changes smoothly with respect to
the liability structure.

Theorem
Let ∆r be a non-negative vector. Consider the perturbations of
the network where are agent i increase his liabilities by η ·∆r
with network debt d(η), normalized so that di(η) = 1. Then
dj(η) is a differentiable function of η, for j 6= i.

∆r is vector of the additional amounts borrowed by agent i.



Theorem
In a (strongly connected) network of financial liabilities, suppose
agent i increases its liabilities. Let d and d′ be the network debt
distribution before and after the increase in agent i’s liability
profile respectively. In the same scenario and same notion as
above, if d′i = 0, then d′ and d are the same.

If, after increasing its liabilities, agent i is found to have no
relative network debt, then it already has zero network debt
prior to increase. Furthermore, the entire network debt
distribution remains the same. Consider, for example,
perturbing a line network.

1 2 3 4
3 2+ ε 1



Consider, for example, perturbing a line network.

1 2 3 4
3 2+ ε 1

The network debt distribution for ε = 0 is (0, 0, 0, 1). Because
any default must originate from 4. This remains the case when
3 borrows ε more from 2. Therefore the network debt
distribution is the same.



Theorem
In the same scenario and same notion as above, if the
additional liabilities incurred by agent i is to agents j such that
dj = 0, then d′ and d are the same.

If an agent borrows more from a zero network debt creditor, the
network debt, for the entire network, is unaffected. This is
consistent with what we intend to capture but the general proof
is not entirely trivial.



1 2 3 4
3 2+ ε 1

A=


0 0 0 0
3 0 0 0
0 2 + ε 0 0
0 0 1 0



I For example, in a line network, the intermediary agent 2
has network debt 0.

I If agent 3 borrows ε more from agent 2, the network debt
distribution remains the same: (0, 0, 0, 1).

I This reflects that additional borrowing by agent 3 does not
change potential default implications within the network.



Theorem
Consider a strongly connected network where agent i increases
his liabilities and agent j decreases hers. Then, for any
k /∈ {i, j}:
(i) If λ ≤ λ′, then

d′k
dk
≤ d′i

di
.

(ii) If λ ≥ λ′, then
d′k
dk
≥ d′j

dj
.

(iii) If λ = λ′, then
d′j
dj
≤ d′k

dk
≤ d′i

di
.

In particular, when the maximal eigenvalue is unaffected by
perturbation (case (iii)), the conclusion is a natural one: in
terms of relative increase,

network debt of j ≤ network debt of k 6∈ {i, j} ≤ network

debt of i.

(Two different liability structures can lead to same λ, e.g. star and
line networks.)
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3

4

11 + ε

1 1− η
A=


0 1 + ε 0 0
0 0 1 0
0 0 0 1− η
1 0 0 0



I For example, if ε is large relative to η in the above
perturbation of the ring network, then λ′ > λ. This is case
(i) and the conclusion of the theorem puts focus on the
agent who borrowed more.

I Conversely, if ε is small relative to η, this results in case
(ii) and the theorem’s conclusion focuses on the agent who
reduced her liabilities.



The maximal eigenvalue of the previous network solves the
equation

det


λ′ −(1 + ε) 0 0
0 λ′ −1 0
0 0 λ′ −(1− η)
−1 0 0 λ′

 = (λ′)4−(1+ε)(1−η) = 0

I If (1 + ε)(1− η) > 1, then λ′ > 1 = λ, we are in case (i).

I If (1 + ε)(1− η) < 1, then λ′ < 1 = λ, we are in case (ii).



d does not see components

A limitation of this notion is that it does not see components.
For example, this network also has network debt distribution
(14 ,

1
4 ,

1
4 ,

1
4), same as the ring network. It has two connected

components, while the ring network has one.

1

2

3

4

1

1

1

1

One default here destroys half (one component) of the network,
instead of the entire network, although agents are still
homogeneous.



Therefore, to fully exploit this notion, it should be accompanied
by cluster analysis that separate the network into components
or, more generally, weakly connected components.



Future Research/Applications

I d is immediately computable—financial networks are small
compared to the internet. This is a tool that can aid
regulators in identifying potential vulnerabilities in a
financial network.

I The above is a snap-shot analysis, causes for change in
configuration are taken as exogenous. One can incorporate
the evolution of network debt distribution in a economic
model, linking network debt distribution to market
equilibrium.
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