

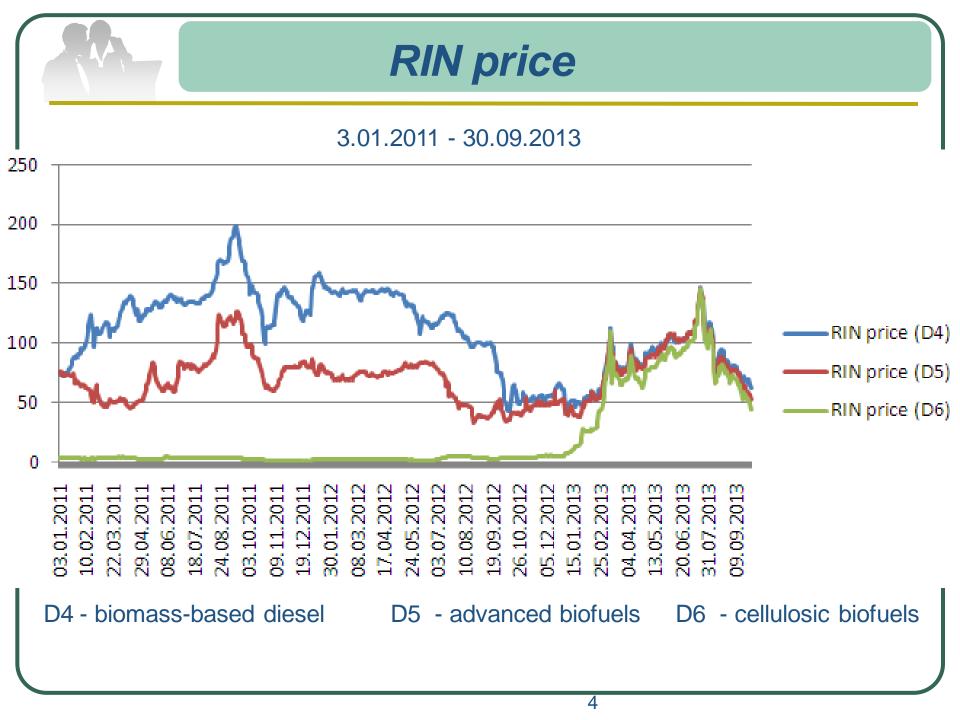
Ekaterina Kakorina

RIN MARKET: price behavior and its forecast

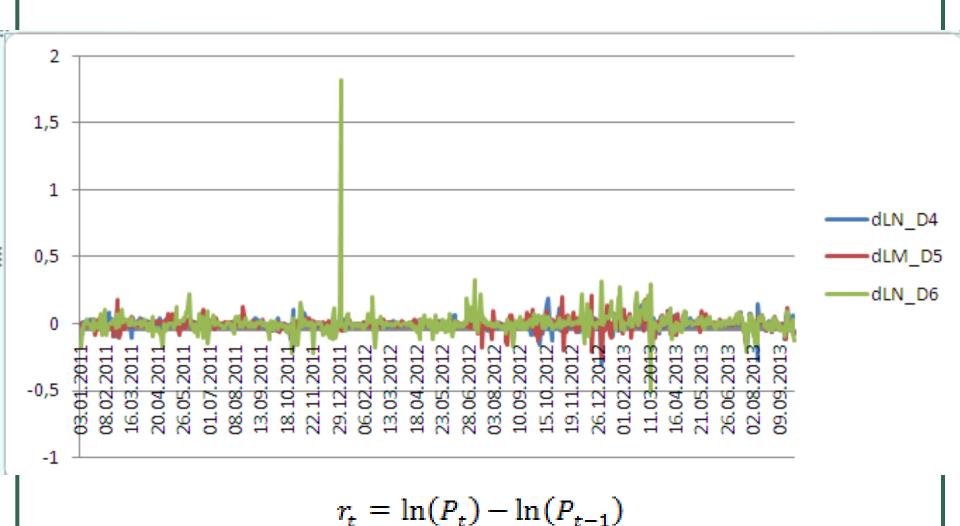
Wyatt Thompson, Seth Meyer, and Pat Westhoff (2010):

"RIN prices are analogous to quota rent or the price of carbon"

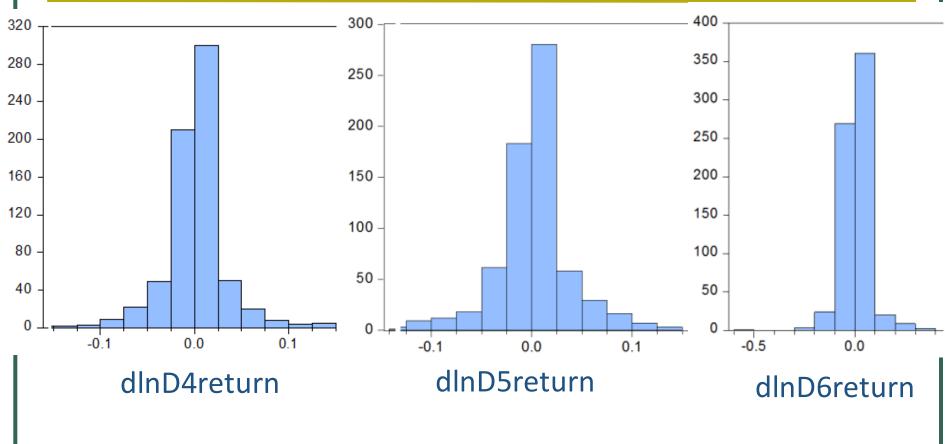
MARKET OF EMISSIONS


RIN MARKET

The target is to research the RIN price behavior and to forecast this price.


Outline

- 1 RIN price
- 2 Univariate GARCH
- 3 Linear interpolation
- 4 Multivariate GARCH



Returns

Distribution

Omid Sabbaghi and Navid Sabbaghi (2011):

- exclude zero returns
- estimate t-GARCH(1,1)

Suppose that the zero return means that maybe at that day it was no trade

ARCH test

Ljung-Box test

$$\begin{split} H_0 &: a_0 = a_1 = a_2 = \dots = a_m = 0 \\ e_t^2 &= a_0 + a_1 e_{t-1}^2 + \dots + a_m e_{t-m}^2 + u_t \end{split}$$

u₊ is a white noise error process

N is the length of the observed time series g is a number of parameters in a model

$$H_0: p_0 = p_1 = p_2 = \dots = p_m = 0$$

$$Q(m) = N(N+2) \sum_{h=1}^{\infty} \frac{p_h^2}{N-h} \in \chi_{m-g}^2$$

m is a number of the first lags of the sample autocorrelation function of the e_t series

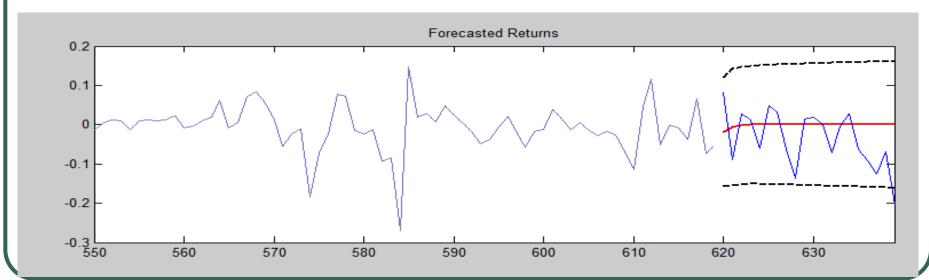
m		ARCH-test	Ljung-Box(e)	Ljung-Box(e^2)
5	Н	1	1	1
	pValue	3.1969e-04	7.1106e-10	2.6498e-05
	ARCHstat/Qstat	23.1236	51.4150	28.7044
	CriticalValue	11.0705	11.0705	11.0705
10	Н	1	1	1
	pValue	1.5027e-04	9.7649e-10	6.9474e-08
	ARCHstat/Qstat	34.5279	62.9997	53.1621
	CriticalValue	18.3070	18.3070	18.3070
15	Н	1	1	1
	pValue	0.0024	6.5791e-10	9.4227e-07
	ARCHstat/Qstat	35.0978	74.6389	56.6460
	CriticalValue	24.9958	24.9958	24.9958

8

Univariate GARCH

$$r_t = \varphi_0 + \varphi_1 r_{t-1} + V_t$$

$$V_t = \sqrt{h_t} u_t \quad u_t \sim t(n)$$


$$h_t = \gamma + \alpha V_{t-1}^2 + \beta h_{t-1}$$

$$r_t = \varphi_0 + \varphi_1 r_{t-1} + \varphi_2 D + V_t$$

$$D = \begin{cases} 1 & if \ t = 190 \\ 0 & otherwise \end{cases}$$

$$V_t = \sqrt{h_t}u_t \quad u_t \sim t(n)$$

$$h_t = \gamma + \alpha V_{t-1}^2 + \beta h_{t-1}$$

Linear interpolation

$$y = y_a + (y_b - y_a) \frac{x - x_a}{x_b - x_a}$$

$$r_{t} = r_{t-1} + (r_{t+1} - r_{t-1}) \frac{t - (t-1)}{(t+1) - (t-1)} = \frac{1}{2} (r_{t+1} + r_{t-1})$$

Quantity of zeros and their percentage

series of returns	before		after	
	number	percentage	number	percentage
D4 RIN	71	10	7	1
D5 RIN	122	18	18	3
D6 RIN	104	15	26	4

Multivariate GARCH

$$r_{t} = \varphi_{0} + \varphi_{1}r_{t-1} + \varphi_{2}D + V_{t}$$

$$D = \{d_{it}\}$$

$$d_{3t} = \begin{cases} 1 & if \ t = 252 \\ 0 & otherwise \end{cases}$$

$$u_t = D_t^{-1/2} V_t \qquad u_t \sim t(n)$$

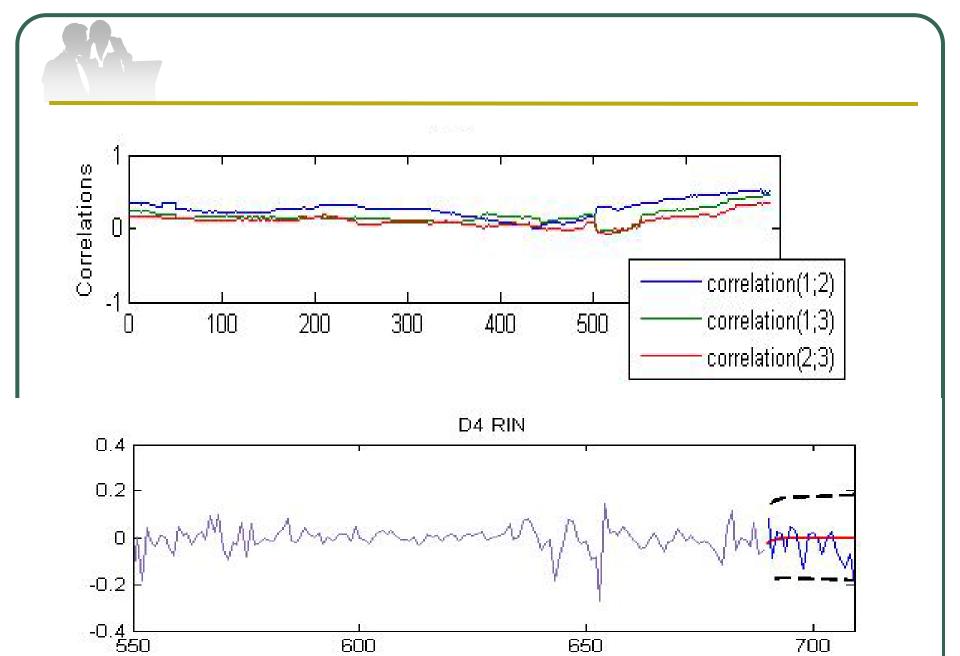
$$R_t = P_t Q_t P_t$$

$$P_{t} = diag\left(diag(Q_{t})^{-\frac{1}{2}}\right) = diag\left(\left[q_{11,t}^{-\frac{1}{2}}, q_{22,t}^{-\frac{1}{2}}, q_{33,t}^{-\frac{1}{2}}\right]\right)$$

$$Q_t = (1 - \delta_1 - \delta_2)S + \delta_1 u_{t-1} u'_{t-1} + \delta_2 Q_{t-1}$$

$$D_t = diag\left(h_t^{\frac{1}{2}}\right)$$

$$h_t = [h_{1t}, h_{2t}, h_{3t}]'$$


$$h_{i,t} = \gamma + \alpha_i V_{i,t-1}^2 + \beta_i h_{i,t-1}$$

 r_t is a $k \times 3$ matrix f returns

 V_t is $k \times 3$ matrix of errors

 R_{t} is the correlation matrix

 Q_t is an unstandardized correlation matrix

Conclusion

- 1. to estimate separately for the price forecast
- 2. positive correlation of all RIN series

