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Basic ”Stylized facts” of asset returns

1 Heavy tails of asset returns distribution
2 Aggregational gaussianity
3 Absence of autocorrelation in asset returns
4 Long memory in volatility
5 Volatility clustering
6 Multifractal properties of asset price time series
7 Time reversal asymmetry and leverage effect
8 Extreme events (Bubbles and crushes)
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Motivation for research
Problems with classical models

Geometrical Brownian Motion - too rough approximation of the real
processes

Fractal Geometrical Brownian Motion has memory not only in
volatility but also in returns

AR, ARCH, GARCH models (in total more than 50) are very
specialized:

I GARCH reproduce heavy tails of PDF
I FIGARCH reproduce slow declining volatility’s ACF
I ERACH reproduce leverage effect

Multiplicative Cascades Model is difficult for interpretation in
applications

Thus the problem of creating a model, which takes into account
basic stylized facts, is still actual
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Definition of the multifractality

Geometrical definition

Fractal is a structure consisting of substructures, each of which is
geometrically similar to hole structure

Abstract definition

Process that preserves its statistical properties under arbitrary affine
transformations

Multifractal or monofractal nature of the random process can be
determined from the analysis of its absolute moments:

Mq (l) = 〈|δlX (t)|q〉 = 〈|X(t+ l)−X(t)|q〉 (1)

which for multifractal process can be represented in the form

Mq (l) = Kql
ζq (2)

where ζq - non-linear function of q
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Multifractal Random Walk model

MRW model was the first model with stationary increments and clear
dependency with respect to time. The authors proposed a continuous
random process:

X (t) = lim
∆t→0

X∆t (t) (3)

as a limit of discrete random process

X∆t (t) =

t/∆t∑
k=1

δX∆t [∆t k] =

t/∆t∑
k=1

ξ∆t [k] eω∆t[k] (4)

where

ξ∆t [k] - Gaussian white nose with zero mean and variance σ2∆t

ω∆t [k] - independent from ξ [k] correlated Gaussian random process

∆t - discretization step of the random process

In financial application X (t) can be employed as the process for
logarithm of price
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Multifractal Random Walk model
Log-volatility process and spectrum

In the MRW model ω∆t [k] is employed as stochastic log-volatility with zero
mean and covariance function decreasing logarithmically:

Cov [ω∆t [k1] , ω∆t [k2]] = λ2 ln ρ∆t [|k1 − k2|] (5)

where

ρ∆t [k] =

{
L

(|k|+1) ∆t
, if |k| ≤ L

∆t
− 1

1, if |k| > L
∆t
− 1

Here manifest itself the first disadvantage of MRW model

lim
∆t→0

〈ω∆t [k]2〉 = lim
∆t→0

λ2 ln
L

∆t
=∞ (6)

On scales l ≤ L MRW model has strict multifractal properties and parabolic
spectrum:

ζq =

(
1

2
+ λ2

)
q − λ2

2
q2 (7)

On scales l > L MRW model has monofractal properties and linear spectrum

ζq = q/2
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Multifractal Random Walk model
Simulation

Fractal Brownian Motion with (left) versus Multifractal Random Walk
(right)
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Multifractal Random Walk model
Properties
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Multifractal Random Walk model
Parameter’s estimation

Parameter σ2 can be estimated by means of fitting dependency between MRW
increment’s scales and their variance (left fig.):

Var [δlX∆t [k]] = σ2l (8)

Remaining parameters λ2 and L can be obtained by means of analysis of the
magnitude correlation function (right fig.):

Ĉτ (l) = 〈|δτX [k + l]| , |δτX [k]|〉, Cτ (l) ∼ −λ2 ln

(
l

L

)
(9)
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Multifractal Random Walk model
Extention of the MRW model to the case of Leverage effect

Skewed MRW is obtained from the MRW model by correction of log-volatility
process:

δX∆t [k] = ξ∆t [k] eω∆t[k], ω̃∆t [k] = ω∆t [k]−
i<k∑
i=1

K (i, j) ξ∆t [k] (10)

where K (i, j) - power-law kernel describing how the sign of the returns at time
i affect at the log-volatility at time j

K (i, j) =
K0

(j − i)α ∆tβ
, j > i (11)

Ratio K0

∆tβ
can be estimated by means of empirical and asymptotic analytical

leverage functions:

L̂ (τ) =
〈δX∆t [i] , δX∆t [i+ τ ]〉

〈δX∆t [i]2〉3/2
, L (i, j) = −2

(
L

∆t

) 3λ2

2 K (i, j)

|i− j|2λ2 (12)
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MRW as a possible bridge to market shock origins

”Are large market events caused by easily identifiable exogenous shocks such as
major news events, or can they occur endogenously, without apparent external
cause, as inherent property of market itself?”

This question was posted by Didier Sornette, Yannick Malevergne and
Jean-Francois Muzy

Some thoughts about market shocks:

Market shocks occur on most of the world’s stock markets: October 1987,
the Hong Kong crash, the Russian Default in August 1998...

There is no doubt that some of the large market shocks are results from
really bad news that moves stock market prices and creates strong bursts
of volatility (like the event of September 11, 2001 and the coup against
Gorbachev on August 19, 1991)

But not all crashes seem to be cause by exogenous forces. Several
researchers have looked for more fundamental origins and have proposed
that a crash may be the climax of an endogenous instabilities

Even more difficult is classification of the volatility bursts: endogenous
versus exogenous
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MRW as a possible bridge to market shock origins

Exogenous shock

Response of the system to a single piece of very bad news that is sufficient by
itself to move the market significantly

The authors consider situation, when system experiences an external shock
with amplitude ω0 at t = 0:

ω (t) = µ+

t∫
−∞

[ω0 × δ (τ) + η (τ)]K (t− τ) dτ (13)

The expected volatility conditional on this shock has form:

Eexo
[
σ2 (t) |ω0

]
= Eexo

[
e2ω(t)|ω0

]
= σ̄2 (t) e2ω0K0

√
λ2L
t (14)

For large enough t the volatility relaxes to its unconditional average
σ̄2 (t) = σ2∆t. So, that the excess volatility due to the external shock decays
to zero as:

Eexo
[
σ2 (t) |ω0

]
− σ̄2 (t) ∼ 1√

t
(15)
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MRW as a possible bridge to market shock origins

Endogenous shock

Response of the system to the cumulative effect of many small pieces of bad
news, each one looking relatively benign on its oven but together adding up,
due to long memory of the volatility, to create large endogenous shock

In these case authors consider the natural evolution of the system without
any large shock, which nevertheless exhibit a large volatility burst ω0 at
t = 0

Large endogenous shock requires a special set of realization of the small
pieces of news η (t)

Thus, to qualify the response in that case authors evaluate:

Eendo
[
σ2 (t) |ω0

]
= Eendo

[
e2ω(t)|ω0

]
=

= exp (2E [ω (t) |ω0] + 2V ar [ω (t) |ω0]) (16)
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MRW as a possible bridge to market shock origins

After all calculations volatility response conditional to endogenous shock has
form

Eendo
[
σ2 (t) |ω0

]
= σ̄2 (t)

(
L

t

)α(s)+β(t)

(17)

where α (s) - conditional volatility response exponent

α (s) =
2s

ln
(
Le3/2

∆t

) , β (t) = 2λ2 ln (t/∆t)

ln (Le3/2/∆t)
, ω0 − µ = s+ C (0) (18)

Within the range ∆t < t ≤ ∆te
|s|
λ2 β (t)� α (s) and equation (17) leads to a

power-law behaviour:
Eendo

[
σ2 (t) |ω0

]
∼ t−α(s) (19)

For determination of the source of the endogenous shock the authors consider
the process

W (t) =

∫ t

−∞
η (τ) dτ (20)

They conclude that expected path of information flow prior to the endogenous

shock (for t < 0) grows like ∆t/
√
−t
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MRW as a possible bridge to market shock origins

Figures from Didier Sornette, Yannick Malevergne and Jean-Francois Muzy:
What causes crashes?
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