PROGNOZ

Parallel computations in financial markets research

Viacheslav Arbuzov (PSNRU, Prognoz Risk Lab)

Konstantin Gavrilov (PSNRU, Prognoz)

Types of parallel architectures

PROGNOZ

Prognoz Risk Lab has access to the supercomputers:

MMP Cluster
Tesla-PGU Cluster

Tesla-PGU Cluster

PROGNOZ

Number of nodes with GPU: 3
Number of GPU per node: 4
GPU type: Nvidia Tesla Fermi
RAM per node: 12 Gb

Technical info:

- ✓ Supercomputer type: Cluster
- ✓ Number of nodes: 20
- ✓ Number of Cores per node: 12
- ✓ CPU type: Intel Xeon 5670 (2.93 GHz)
- ✓ RAM per node: 48 Gb
- ✓ OS: Linux CentOS 5
- Theoretical peak performance: 8992 GFlops
- Maximal LINPACK performance achieved: 4883 Gflops
- ✓ Communication network: QDR Infiniband
- Transport network: Gigabit Ethernet
- ✓ Service network: Gigabit Ethernet

MMP Cluster

PROGNOZ

Computing cluster for reverse engineering, agent-based simulation and prediction of microstructure and liquidity of the financial market

Technical info:

- ✓ Installation Site: Perm state university
- ✓ Supercomputer type: Cluster
- ✓ Number of nodes: 3
- ✓ Number of Cores per node: 12
- ✓ CPU type: Intel Xeon 5650 (2.66 GHz)
- ✓ RAM per node: 64 Gb
- ✓ OS: Windows Server 2003

				Contraction of the second
312	0			
u Ö	Ê			
		100	11791	

Architecture of cluster

What is R?

PROGNOZ

- R is statistical and graphical programming environment
- Appeared in 1993 and designed by Ross Ihaka and Robert Gentleman
- R is a GNU project
- R a free implementation of the S language
- It runs on a variety of platforms including Windows, Unix and MacOS
- It contains advanced statistical routines not yet available in other packages

There is more than 4300 packages in which allow use specialized statistical techniques, graphical devices, import/export capabilities, reporting tools, etc.

Useful Links:

- ✓ www.r-project.org
- ✓ www.statmethods.net
- ✓ www.r-bloggers.com
- ✓ addictedtor.free.fr/graphiques
- ✓ www.use-r.org
- ✓ www.r-analytics.blogspot.com

R in parallel computing

Task list of cluster

- Data Sample
- Long memory (ACF, PACF) and CCDF
- Variables PDF fitting
- · Volatility estimation
- Diagonal effect
- Leverage effect
- · Liquidity analysis
- · Shocks analysis
- Other....

- Calculation of characteristics
- Agents cluster analysis
- Herding behavior
- Traders activity visualization
- CDA Monte-Carlo simulation
- Backtesting

Statistical analysis

PROGNOZ

Estimated parameters:

- Bid-Ask Spread
- Deals Quantity
- > Bid
- > Asc
- > Price
- Volume-weighted average price

Parameters estimated with MLE, using:

- MASS package
- igraph package
- fGarch package

Statistical analysis

PROGNOZ

Autocorrelation function of order flow shows that it has long memory. More over some instruments has long memory caused by herding behaviour.

* Fabrizio Lillo. Order flow in financial markets: Origin of persistence and impact of metaorders, 2011

Red line – splitting in order flow **Blue** line – herding in order flow

Parallel computations in statistical analysis

How to create agent based model (ABM) ?

PROGNOZ

* Michele Tumminello, Salvatore Micciche, Fabrizio Lillo, Jyrki Piilo, and Rosario N. Mantegna, Statistically validated networks in bipartite complex systems, (2010)

** Martin Rosvall and Carl T. Bergstrom, Maps of random walks on complex networks reveal community structure, (2008)

Order flow

PROGNOZ

Questions:

How to distinguish flows?

What characteristics should we select?

Order flow characteristics and fitting

Simulation based on copula

To save the dependences between characteristics of order flow, we use copula mechanism in generation scenarios.

PROGNOZ

Copula generation:

- Allows to describe the dependence between random variables.
- There are many parametric copula families available:
 - Gaussian copula
 - Gumbel
 - Frank
 - others

Macro characteristics of simulated market

PROGNOZ

10:30:00 10:58:00 11:26:00 11:54:00 12:22:00 12:50:00 13:18:00 13:46:00 14:14:00 14:42:00 15:10:00 15:38:00 16:06:00 16:34:00 17:02:00 17:30:00 17:58:00 18:26:0

Macro characteristics for backtesting of model:

- Price volatility
- Distribution of returns
- Distribution of volume
- Quantity of deals
- Presence of stylized facts in price changes
- Presence of stylized facts in order flow

Potential problems:

- Heterogeneity of clusters
- Empirical distributions do not converge to marginal distributions
- 'Zero intelligence' agents
- System does not take into account external shocks

Master class

Parallel computations on "MMP" cluster

and

Parallel computations on "Tesla – PGU" cluster