Equity portfolio liquidation value estimation with microstructure taken into account (MICEX case)

Vladimir Naumenko FERM Lab, HSE

Traditional Approach

Perfect market:

- Security markets are perfectly elastic (traders act as price takers).
- > All market orders have immediate execution.

Efficient market:

- Prices reflect all available information (*Fama,* 1970).
- > Price adjustment process.

• Optimal impulse control.

• Market liquidity.

• Liquidation value.

- Traditional models (CAPM, Black-Scholes etc.) do not account market in asset pricing ("Black box").
- Market Microstructure is the study of the process and outcomes of exchanging assets under explicit trading rules (O'Hara, 1995).

- Slippery and elusive concept, reflective its multifaceted nature.
- A liquid market is a market where participants can rapidly execute large-volume transactions with a small impact on prices (BIS, 1999).
- > Liquidity is a relative market characteristic.
- Market design defines liquidity.

Market Types (Execution Systems)

Order-driven market

Quote-driven market Price-driven market Dealer market

Brokered market

Aspects of Market Liquidity (Kyle, 1985)

 Tightness – the cost of turning around a position over a short period of time.

 Depth – the size of an order flow innovation required to change prices a given amount.

 Resiliency – the speed with which prices recover from a random, uninformative shock.

ſ

Data Set

 708 stocks traded in MICEX from January 2006 till December 2007.

• All orders during this period (160 115 507 records).

All transactions during this period (151 022 856 records).

Database Structure

- Limit order book replication (Kavajecz, 1999).
- Data modification.
- Aggregation (median trade volume, bid-ask spread etc.).
- Splitting orders into several types for market resiliency estimation.

Visualization of Trading Process

Í

Cost Function

$$\Theta_t(n_k) = \sum_{i=1}^N (p_i - p)n_i$$

 n_k – total volume to be executed in time k,

- p_i execution price of i th order,
- n_i volume of *i* th order,
- p asset market price which is the following:

$$p = \frac{Bid + Ask}{2}$$

- Accounts for tightness and depth.
- Random non-negative convex function with f(0)=0.
- Approximated by ax^3+bx^2 .

Portfolio Liquidation Value

- Portfolio value is a liquidation value.
- Portfolio liquidation depends on liquidation strategy: — Immediate liquidation.
 - Uniform liquidation.
- Optimal portfolio liquidation can be defined by different ways including hedging.

Optimal Liquidation Model

- V- initial volume,
- v_k volume for liquidation in time k,
- V_k volume left at the beginning of time k,
- μ average trend in time *k*,
- σ volatility,
- $E\Theta(v_k)$ average costs in time k,
- $Var\Theta(v_k)$ variance of costs in time k

Optimal Liquidation Task

$$\begin{cases} \sum_{i=1}^{N} v_{i} = V \\ EW = x_{0}V + \mu \sum_{k=1}^{N} \sum_{i=k}^{N} v_{i} - \sum_{k=1}^{N} E\Theta_{k}(v_{k}) \\ VarW = \sigma^{2} \sum_{k=1}^{N} \left(\sum_{i=k}^{N} v_{i}\right)^{2} + \sum_{k=1}^{N} Var\Theta_{k}(v_{k}) \\ EW \rightarrow \sup_{v_{1}, \dots, v_{N}} \\ VarW \rightarrow \inf_{v_{1}, \dots, v_{N}} \end{cases}$$

ſ

$$J(v) = \lambda \sqrt{VarW} - E(W) \rightarrow \inf_{v_1, \dots, v_n}$$

- λ risk aversion coefficient;
- $\lambda = 0 risk-neutral (uniform liquidation);$
- $\lambda > 0 risk-averse;$
- $\lambda = \infty$ immediate liquidation.

Time Horizon Dependency

• The larger the number of time intervals the less aggressive the trading.

The largest part of total volume is liquidated in first time intervals.

Portfolio Liquidation (Lukoil, 10000 stocks, N=5, λ=1)

Portfolio Liquidation (Lukoil, 10000 stocks, N=10, λ=1)

Portfolio Liquidation (Lukoil, 10000 stocks, N=15, λ=1)

Risk Aversion Coefficient Dependency

- The larger the risk aversion coefficient the more aggressive the liquidation.
- λ =0 risk-neutral (uniform liquidation);
- λ>0 risk-averse;
- $\lambda = \infty$ immediate liquidation.

Portfolio Liquidation (Lukoil, 10000 stocks, N=10, λ=0)

Portfolio Liquidation (Lukoil, 10000 stocks, N=10, λ=0,1)

Portfolio Liquidation (Lukoil, 10000 stocks, N=10, λ=1)

Portfolio Liquidation (Lukoil, 10000 stocks, N=10, λ=10)

Portfolio Liquidation (Lukoil, 10000 stocks, N=10, λ=1000)

Measuring the Resiliency (Large, 2007)

- Resiliency is formalized in terms of a time-frame and probability of order book replenishment.
- Resiliency is captured simply by the way large trades (liquidity demand shock) alter the future intensities of fresh limit order submissions (resiliency events).
- LOB is modeled as mutually-exciting ten-variate Hawkes point process.

Categorization of Events (Biais, 1995)

Nº	Submission or Cancellation?	Buy or Sell?	Immediate Execution?	Moves prices?	Named
1	S	В	Yes (MO)	Yes	Market buy that moves the ask
2	S	S	Yes (MO)	Yes	Market sale that moves the bid
3	S	В	No (LO)	Yes	Bid between the quotes
4	S	S	No (LO)	Yes	Ask between the quotes
5	S	В	No (MO)	No	Market buy that doesn't move the ask
6	S	S	No(MO)	No	Market sale that doesn't move the bid
7	S	В	No (LO)	No	Bid at or below best bid
8	S	S	No (LO)	No	Ask at or above best ask
9	С	В	No	No	Cancelled bids
10	С	S	No	No	Cancelled asks

Trading Process

Н

lí

THANK YOU FOR YOUR ATTENTION!!!

