
Aleksei Klimenko

Modern Cryptography

Magic Workshop

Perm Winter School 2020

- Elliptic curves cryptography basics

- Schnorr signature algorithm

- BLS protocol

- NODR crypto-protocol (BLS-based)

- Exercise

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

Elliptic curve equation

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝒎𝒐𝒅 𝒑

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

Elliptic curve equation

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝒎𝒐𝒅 𝒑

Point addition operation

𝑃 + 𝑅 = 𝑄 𝑄 − 𝑅 = 𝑃

𝐴 + 𝐵 + 𝐶 = 𝐴 + 𝐵 + 𝐶

𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃

𝑃 + 𝑃 = 2𝑃
𝑃 + 𝑃 + 𝑃 = 3𝑃
𝑃 + 𝑃 + 𝑃 + 𝑃 = 4𝑃

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

Elliptic curve equation

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝒎𝒐𝒅 𝒑

Point addition operation

𝑃 + 𝑅 = 𝑄 𝑄 − 𝑅 = 𝑃

𝐴 + 𝐵 + 𝐶 = 𝐴 + 𝐵 + 𝐶

𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃

𝑃 + 𝑃 = 2𝑃
𝑃 + 𝑃 + 𝑃 = 3𝑃
𝑃 + 𝑃 + 𝑃 + 𝑃 = 4𝑃

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

The magic here is that any point addition to itself n times is a one-way function

A = α ∗ 𝐺

Meaning that computing it forward is simple but computing it backward is hard

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

The magic here is that any point addition to itself n times is a one-way function

A = α ∗ 𝐺

Meaning that computing it forward is simple but computing it backward is hard

Imagine that α equals 477 and to compute A = 477 ∗ 𝐺 we can add point G to itself 477 times

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

The magic here is that any point addition to itself n times is a one-way function

A = α ∗ 𝐺

Meaning that computing it forward is simple but computing it backward is hard

Imagine that α equals 477 and to compute A = 477 ∗ 𝐺 we can add point G to itself 477 times

Or, knowing that the binary representation of 477 is

0 1 1 1 0 1 1 1 0 1

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

The magic here is that any point addition to itself n times is a one-way function

A = α ∗ 𝐺

Meaning that computing it forward is simple but computing it backward is hard

Imagine that α equals 477 and to compute A = 477 ∗ 𝐺 we can add point G to itself 477 times

Or, knowing that the binary representation of 477 is

0 1 1 1 0 1 1 1 0 1

We can just compute this

0*512G + 1*256G + 1*128G + 1*64G + 0*32G + 1*16G + 1*8G + 1*4G + 0*2G + 1*G

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

The magic here is that any point addition to itself n times is a one-way function

A = α ∗ 𝐺

Meaning that computing it forward is simple but computing it backward is hard

Imagine that α equals 477 and to compute A = 477 ∗ 𝐺 we can add point G to itself 477 times

Or, knowing that the binary representation of 477 is

0 1 1 1 0 1 1 1 0 1

We can just compute this

0*512G + 1*256G + 1*128G + 1*64G + 0*32G + 1*16G + 1*8G + 1*4G + 0*2G + 1*G

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

Modern Cryptography Magic Workshop

Perm Winter School 2020

Elliptic curves cryptography basics

Symmetric Key Size
(bits)

RSA and Diffie-Hellman
Key Size (bits)

Elliptic Curve Key Size
(bits)

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 521

Modern Cryptography Magic Workshop

Perm Winter School 2020

Schnorr signature algorithm (1989)

Elliptic curve: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

Public parameters: 𝑎, 𝑏, 𝑝, 𝐺

Modern Cryptography Magic Workshop

Perm Winter School 2020

Schnorr signature algorithm (1989)

Elliptic curve: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

Public parameters: 𝑎, 𝑏, 𝑝, 𝐺

Alice: secret key α → public key A = α ∗ 𝐺

Bob: secret key β → public key B = β ∗ 𝐺

Modern Cryptography Magic Workshop

Perm Winter School 2020

Schnorr signature algorithm (1989)

Elliptic curve: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

Public parameters: 𝑎, 𝑏, 𝑝, 𝐺

Alice: secret key α → public key A = α ∗ 𝐺

Bob: secret key β → public key B = β ∗ 𝐺

One-way function because of
discrete logarithm problem

Modern Cryptography Magic Workshop

Perm Winter School 2020

Schnorr signature algorithm (1989)

Elliptic curve: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

Public parameters: 𝑎, 𝑏, 𝑝, 𝐺

Alice: secret key α → public key A = α ∗ 𝐺

Bob: secret key β → public key B = β ∗ 𝐺

Signing: 𝑠 = 𝑘 + α ∗ ℎ𝑎𝑠ℎ 𝑚, 𝑅 (R = k ∗ 𝐺 - random point)

Signature: 𝑠, 𝑅

Modern Cryptography Magic Workshop

Perm Winter School 2020

Schnorr signature algorithm (1989)

Elliptic curve: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

Public parameters: 𝑎, 𝑏, 𝑝, 𝐺

Alice: secret key α → public key A = α ∗ 𝐺

Bob: secret key β → public key B = β ∗ 𝐺

Signing: 𝑠 = 𝑘 + α ∗ ℎ𝑎𝑠ℎ 𝑚, 𝑅 (R = k ∗ 𝐺 - random point)

Signature: 𝑠, 𝑅

Verify: 𝑠 ∗ 𝐺

Modern Cryptography Magic Workshop

Perm Winter School 2020

Schnorr signature algorithm (1989)

Elliptic curve: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

Public parameters: 𝑎, 𝑏, 𝑝, 𝐺

Alice: secret key α → public key A = α ∗ 𝐺

Bob: secret key β → public key B = β ∗ 𝐺

Signing: 𝑠 = 𝑘 + α ∗ ℎ𝑎𝑠ℎ 𝑚, 𝑅 (R = k ∗ 𝐺 - random point)

Signature: 𝑠, 𝑅

Verify: 𝑠 ∗ 𝐺 = 𝑘 ∗ 𝐺 + α ∗ ℎ𝑎𝑠ℎ 𝑚, 𝑅 ∗ 𝐺

Modern Cryptography Magic Workshop

Perm Winter School 2020

Schnorr signature algorithm (1989)

Elliptic curve: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

Public parameters: 𝑎, 𝑏, 𝑝, 𝐺

Alice: secret key α → public key A = α ∗ 𝐺

Bob: secret key β → public key B = β ∗ 𝐺

Signing: 𝑠 = 𝑘 + α ∗ ℎ𝑎𝑠ℎ 𝑚, 𝑅 (R = k ∗ 𝐺 - random point)

Signature: 𝑠, 𝑅

Verify: 𝑠 ∗ 𝐺 = 𝑅 + 𝐴 ∗ ℎ𝑎𝑠ℎ 𝑚, 𝑅

Modern Cryptography Magic Workshop

Perm Winter School 2020

Schnorr signature algorithm (1989)

Modern Cryptography Magic Workshop

Perm Winter School 2020

Boneh–Lynn–Shacham (BLS) signature scheme uses a bilinear pairing for verification

And signatures are elements of an elliptic curve group

Modern Cryptography Magic Workshop

Perm Winter School 2020

Boneh–Lynn–Shacham (BLS) signature scheme uses a bilinear pairing for verification

And signatures are elements of an elliptic curve group

Pairing function: 𝑒 α ∗ 𝑃, 𝑄 = 𝑒(𝑃, 𝑄)α = 𝑒 𝑃, α ∗ 𝑄

𝑒 α ∗ 𝑃, β ∗ 𝑄 = 𝑒(𝑃, 𝑄)αβ = 𝑒 β ∗ 𝑃, α ∗ 𝑄

Modern Cryptography Magic Workshop

Perm Winter School 2020

Boneh–Lynn–Shacham (BLS) signature scheme uses a bilinear pairing for verification

And signatures are elements of an elliptic curve group

Pairing function: 𝑒 α ∗ 𝑃, 𝑄 = 𝑒(𝑃, 𝑄)α = 𝑒 𝑃, α ∗ 𝑄

𝑒 α ∗ 𝑃, β ∗ 𝑄 = 𝑒(𝑃, 𝑄)αβ = 𝑒 β ∗ 𝑃, α ∗ 𝑄

𝑒 3 ∗ 𝑷, 𝑄 = 𝑒 𝑷 + 𝑷 + 𝑷, 𝑄 = 𝑒 𝑷, 𝑄 ∗ 𝑒 𝑷, 𝑄 ∗ 𝑒 𝑷, 𝑄 = 𝑒(𝑷, 𝑄)𝟑

𝑒(𝑃, 𝑸)𝟑 = 𝑒 𝑃, 𝑸 ∗ 𝑒 𝑃, 𝑸 ∗ 𝑒 𝑃, 𝑸 = 𝑒 𝑃, 𝑸 + 𝑸 + 𝑸 = 𝑒 𝑃, 3 ∗ 𝑸

Modern Cryptography Magic Workshop

Perm Winter School 2020

Boneh–Lynn–Shacham (BLS) signature scheme uses a bilinear pairing for verification

And signatures are elements of an elliptic curve group

Pairing function: 𝑒 α ∗ 𝑃, 𝑄 = 𝑒(𝑃, 𝑄)α = 𝑒 𝑃, α ∗ 𝑄

𝑒 α ∗ 𝑃, β ∗ 𝑄 = 𝑒(𝑃, 𝑄)αβ = 𝑒 β ∗ 𝑃, α ∗ 𝑄

𝑒 3 ∗ 𝑷, 𝑄 = 𝑒 𝑷 + 𝑷 + 𝑷, 𝑄 = 𝑒 𝑷, 𝑄 ∗ 𝑒 𝑷, 𝑄 ∗ 𝑒 𝑷, 𝑄 = 𝑒(𝑷, 𝑄)𝟑

𝑒(𝑃, 𝑸)𝟑 = 𝑒 𝑃, 𝑸 ∗ 𝑒 𝑃, 𝑸 ∗ 𝑒 𝑃, 𝑸 = 𝑒 𝑃, 𝑸 + 𝑸 + 𝑸 = 𝑒 𝑃, 3 ∗ 𝑸

Modern Cryptography Magic Workshop

Perm Winter School 2020

That`s why it is a bilinear mapping – we have

two different ways to get same result e(P,Q)α

One way is e(α*P,Q)
Another way is e(P, α* Q)

Boneh–Lynn–Shacham (BLS) signature scheme uses a bilinear pairing for verification

And signatures are elements of an elliptic curve group

Pairing function: 𝑒 α ∗ 𝑃, 𝑄 = 𝑒(𝑃, 𝑄)α = 𝑒 𝑃, α ∗ 𝑄

𝑒 α ∗ 𝑃, β ∗ 𝑄 = 𝑒(𝑃, 𝑄)αβ = 𝑒 β ∗ 𝑃, α ∗ 𝑄

Key generation: private key is a random pk → public key P = pk ∗ 𝐺

Signing: 𝑆 = pk ∗ 𝐻 𝑚 (just 𝑝𝑘 times hash of a message)

Signature: 𝑆 (just a single point an a curve, no additional randomness!)

Verify: 𝑒 𝑃, 𝐻(𝑚) = 𝑒 𝐺, 𝑆

Modern Cryptography Magic Workshop

Perm Winter School 2020

Boneh–Lynn–Shacham (BLS) signature scheme uses a bilinear pairing for verification

And signatures are elements of an elliptic curve group

Pairing function: 𝑒 α ∗ 𝑃, 𝑄 = 𝑒(𝑃, 𝑄)α = 𝑒 𝑃, α ∗ 𝑄

𝑒 α ∗ 𝑃, β ∗ 𝑄 = 𝑒(𝑃, 𝑄)αβ = 𝑒 β ∗ 𝑃, α ∗ 𝑄

Key generation: private key is a random pk → public key P = pk ∗ 𝐺

Signing: 𝑆 = pk ∗ 𝐻 𝑚 (just 𝑝𝑘 times hash of a message)

Signature: 𝑆 (just a single point an a curve, no additional randomness!)

Verify: 𝑒 𝑃, 𝐻(𝑚) = 𝑒 𝐺, 𝑆

𝒆 𝑮, 𝑯(𝒎) 𝒑𝒌 We just need to check that the public key and the

message hash are mapped to the same number

as the curve generator point and the signature

Modern Cryptography Magic Workshop

Perm Winter School 2020

Boneh–Lynn–Shacham (BLS) signature scheme uses a bilinear pairing for verification

And signatures are elements of an elliptic curve group

Pairing function: 𝑒 α ∗ 𝑃, 𝑄 = 𝑒(𝑃, 𝑄)α = 𝑒 𝑃, α ∗ 𝑄

𝑒 α ∗ 𝑃, β ∗ 𝑄 = 𝑒(𝑃, 𝑄)αβ = 𝑒 β ∗ 𝑃, α ∗ 𝑄

Key generation: private key is a random pk → public key P = pk ∗ 𝐺

Signing: 𝑆 = pk ∗ 𝐻 𝑚 (just 𝑝𝑘 times hash of a message)

Signature: 𝑆 (just a single point an a curve, no additional randomness!)

Verify: 𝑒 𝑃, 𝐻(𝑚) = 𝑒 𝐺, 𝑆

More info:

https://en.wikipedia.org/wiki/Boneh%E2%80%93Lynn%E2%80%93Shacham

https://medium.com/cryptoadvance/bls-signatures-better-than-schnorr-5a7fe30ea716

Modern Cryptography Magic Workshop

Perm Winter School 2020

https://en.wikipedia.org/wiki/Boneh%E2%80%93Lynn%E2%80%93Shacham
https://medium.com/cryptoadvance/bls-signatures-better-than-schnorr-5a7fe30ea716

Boneh–Lynn–Shacham (BLS) signature scheme uses a bilinear pairing for verification

And signatures are elements of an elliptic curve group

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR creates an open
marketplace where
millions of people around
the world can lease their
idle bandwidth to
thousands of video
streaming services and
receive instant payment in
cryptocurrency

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

Tracker: secret key is a random τ → public key T = τ ∗ 𝐺

Alice (viewer): secret key is a random α → public key A = α ∗ 𝐺

Bob (distributing node): secret key is a random β → public key B = β ∗ 𝐺

Original video is split into segments:

Segment #1 hash of a file f1 → hash to the point F1 = f1 * G

Segment #2 hash of a file f2 → hash to the point F2 = f2 * G

… …

Segment #n hash of a file fn → hash to the point Fn = fn* G

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

Segment key generation

Tracker assign each viewer with a sequence of video segments

by generating a set of segment keys which is in fact just

a BLS signature of a point that link viewers public key and a hash of a file

Alice public key bind to segment #1 (A + F1) → segment key KA
1 = τ ∗ (A + F1)

Alice public key bind to segment #3 (A + F3) → segment key KA
3 = τ ∗ (A + F3)

Alice public key bind to segment #8 (A + F8) → segment key KA
8 = τ ∗ (A + F8)

Alice public key bind to segment #9 (A + F9) → segment key KA
9 = τ ∗ (A + F9)

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

Segment key generation

Tracker assign each viewer with a sequence of video segments

by generating a set of segment keys which is in fact just

a BLS signature of a point that link viewers public key and a hash of a file

Alice public key bind to segment #1 (A + F1) → segment key KA
1 = τ ∗ (A + F1)

Alice public key bind to segment #3 (A + F3) → segment key KA
3 = τ ∗ (A + F3)

Alice public key bind to segment #8 (A + F8) → segment key KA
8 = τ ∗ (A + F8)

Alice public key bind to segment #9 (A + F9) → segment key KA
9 = τ ∗ (A + F9)

Only Tracker can produce such segment keys

because of secret key τ

Therefore, these keys can be considered as

authorization from Tracker to Alice

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

Segment key generation

Tracker assign each viewer with a sequence of video segments

by generating a set of segment keys which is in fact just

a BLS signature of a point that link viewers public key and a hash of a file

Alice public key bind to segment #1 (A + F1) → segment key KA
1 = τ ∗ (A + F1)

Alice public key bind to segment #3 (A + F3) → segment key KA
3 = τ ∗ (A + F3)

Alice public key bind to segment #8 (A + F8) → segment key KA
8 = τ ∗ (A + F8)

Alice public key bind to segment #9 (A + F9) → segment key KA
9 = τ ∗ (A + F9)

Each actor in the system must access to the files only by this segment keys

It mean that if distributing node Bob store some files, he was also received

authorization from Tracker to download this files earlier by segment keys KB
i = τ ∗ (B + Fi)

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

Signal messaging in p2p-network

Bob send have messages to Alice that contains information about all files that Bob store, for example:

S2 = β ∗ (A + F2) S3 = β ∗ (A + F3) S4 = β ∗ (A + F4)

S5 = β ∗ (A + F5) S7 = β ∗ (A + F7) S8 = β ∗ (A + F8)

Alice have segment keys received from Tracker:

KA
1 = τ ∗ (A + F1) KA

3 = τ ∗ (A + F3) KA
8 = τ ∗ (A + F8)

KA
9 = τ ∗ (A + F9)

Searching for this match on Alice`s side is done by two pairing for each segment key:

if 𝑒 𝐵, KA
3 = 𝑒 𝑇, S3 → 𝑒 β ∗ 𝐺, τ ∗ (A + F3) = 𝑒 τ ∗ 𝐺, β ∗ (A + F3) than Bob have file for KA

3

if 𝑒 𝐵, KA
8 = 𝑒 𝑇, S8 → 𝑒 β ∗ 𝐺, τ ∗ (A + F8) = 𝑒 τ ∗ 𝐺, β ∗ (A + F8) than Bob have file for KA

8

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

Signal messaging in p2p-network

Bob send have messages to Alice that contains information about all files that Bob store, for example:

S2 = β ∗ (A + F2) S3 = β ∗ (A + F3) S4 = β ∗ (A + F4)

S5 = β ∗ (A + F5) S7 = β ∗ (A + F7) S8 = β ∗ (A + F8)

Alice have segment keys received from Tracker:

KA
1 = τ ∗ (A + F1) KA

3 = τ ∗ (A + F3) KA
8 = τ ∗ (A + F8)

KA
9 = τ ∗ (A + F9)

Searching for this match on Alice`s side is done by two pairing for each segment key:

if 𝑒 𝐵, KA
3 = 𝑒 𝑇, S3 → 𝑒 β ∗ 𝐺, τ ∗ (A + F3) = 𝑒 τ ∗ 𝐺, β ∗ (A + F3) than Bob have file for KA

3

if 𝑒 𝐵, KA
8 = 𝑒 𝑇, S8 → 𝑒 β ∗ 𝐺, τ ∗ (A + F8) = 𝑒 τ ∗ 𝐺, β ∗ (A + F8) than Bob have file for KA

8

BLS allows to check does two signatures from two actors created

for the same message or not without knowing that message!

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

Downloading files in p2p-network

When Alice receive file F3 from Bob she checks correctness of received file by:

(1) calculate hash of a file content f3

(2) calculate hash of a file to the point of a file F3 = f3* G

(3) add her own public key with point of a file (A + F3)

(4) check that this point match with segment key 𝑒 𝐺, KA
3 = 𝑒 𝑇, (A + F3)

(5) sing and send delivery confirm to Bob S`3 = α ∗ (B + F3)

After receiving and checking delivery confirm for file F3 (checking Alice`s signature S`3) Bob starts
transferring the next file F8 (which checks same way at the end of the transfer)

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

Creating crypto-report

To create on Bob`s side a report that proves Alice download file F3 from Bob, and both was authorized
by Tracker we need next signatures from all three actors:

form Tracker KA
3 = τ ∗ (A + F3)

from Tracker KB
3 = τ ∗ (B + F3)

from Alice S`3 = α ∗ (B + F3)

from Bob S3 = β ∗ (A + F3)

Once Bob have all four needed parts, he can produce aggregated signature by just combine all four
signatures in one signature:

RA
3 = KA

3 + KB
3 + S`3 + S3

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

KA
1

KB
1

S1
S`1

RA
1

KA
2

KB
2

S2
S`2

RA
2

…
 …

 …
 …

 …
 …

 …

KA
i

KB
i

Si
S`i

RA
i

RA
∑

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

Creating crypto-report (N-viewers extension)

But what if Bob distribute files not just to Alice but to several other viewers as well?

Once again, the solution is signature aggregation – N-viewers aggregation report

…
 …

 …
RA

∑

R∑
∑

RC
∑ RD

∑ RE
∑ RF

∑ RZ
∑

Note that this final signature is the main

but just one part of a final report

In addition to this signature, when publishing

final report to DLT, we must attach

(or give an instructions on how to construct)

a “message” which this given signature fits

Modern Cryptography Magic Workshop

Perm Winter School 2020

NODR crypto-protocol (BLS-based)

Modern Cryptography Magic Workshop

Perm Winter School 2020

Once Bob creates One-viewers aggregation signature and decide to get his token reward there need
to be an instruction for validators on how to construct a message that fits given signature

First lets remember how pairing and BLS signature verification works

Pairing function: 𝑒 α ∗ 𝑃, 𝑄 = 𝑒(𝑃, 𝑄)α = 𝑒 𝑃, α ∗ 𝑄

𝑒 3 ∗ 𝑷, 𝑄 = 𝑒 𝑷 + 𝑷 + 𝑷, 𝑄 = 𝑒 𝑷, 𝑄 ∗ 𝑒 𝑷, 𝑄 ∗ 𝑒 𝑷, 𝑄 = 𝑒(𝑷, 𝑄)𝟑

𝑒(𝑃, 𝑸)𝟑 = 𝑒 𝑃, 𝑸 ∗ 𝑒 𝑃, 𝑸 ∗ 𝑒 𝑃, 𝑸 = 𝑒 𝑃, 𝑸 + 𝑸 + 𝑸 = 𝑒 𝑃, 3 ∗ 𝑸

Verification: e(G , S) = e(P , H(m))

Verification in our case: e(G ,RA
∑) = e(P , H(m))

Aggregated signature that Bob

produced
“Some” public key

“Some” message

NODR crypto-protocol (BLS-based)

Modern Cryptography Magic Workshop

Perm Winter School 2020

Once Bob creates One-viewers aggregation signature and decide to get his token reward there need
to be an instruction for validators on how to construct a message that fits given signature

Now lets construct verification equation for our case:

e(G , RA
∑) = e(G , τ * ∑(A + Fi) + τ * ∑(B + Fi) + α * ∑(B + Fi) + β * ∑(A + Fi))

e(G , RA
∑) = e(G , (τ + β) * ∑(A + Fi) + (τ + α) * ∑(B + Fi))

e(G , RA
∑) = e(G , (τ + β) * ∑(A + Fi)) * e(G , (τ + α) * ∑(B + Fi))

e(G , RA
∑) = e((τ + β) * G , ∑(A + Fi)) * e((τ + α) * G , ∑(B + Fi))

e(G , RA
∑) = e((T+ B) , ∑(A + Fi)) * e((T + A) , ∑(B + Fi))

NODR crypto-protocol (BLS-based)

Modern Cryptography Magic Workshop

Perm Winter School 2020

Once Bob creates One-viewers aggregation signature and decide to get his token reward there need
to be an instruction for validators on how to construct a message that fits given signature

Finally this is our verification equation:

e(G , RA
∑) = e((T+ B) , ∑(A + Fi)) * e((T + A) , ∑(B + Fi))

On the one hand verifier must pair point G and Bob`s aggregated signature RA
∑

On the another hand verifier must calculate two pairings:

(1) sum of a public key`s (T + B) with summary point ∑(A + Fi)
(2) sum of a public key`s (T + A) with summary point ∑(B + Fi)

then multiply them, and if this two results are equal, then verifier convinced that job of transfer files Fi

from Bob to Alice has been successfully completed and therefore must be paid

Exercise

Modern Cryptography Magic Workshop

Perm Winter School 2020

Exercise

Modern Cryptography Magic Workshop

Perm Winter School 2020

How to prevent double reward?

Exercise

Modern Cryptography Magic Workshop

Perm Winter School 2020

How to prevent double reward?

The idea is to save “some information” to the DLT as cheap as it possible (in terms of fees and throughput)

So that later validators can check that “information” and decide

Whether distributing node reports a job that was ordered by Tracker or not and pay for such job only once

Exercise

Modern Cryptography Magic Workshop

Perm Winter School 2020

How to prevent double reward?

The idea is to save “some information” to the DLT as cheap as it possible (in terms of fees and throughput)

So that later validators can check that “information” and decide

Whether distributing node reports a job that was ordered by Tracker or not and pay for such job only once

Sounds like unspent

transaction in Bitcoin

Exercise

Modern Cryptography Magic Workshop

Perm Winter School 2020

How to prevent double reward?

Imagine that Alice willing to download files with segment keys once received from Tracker:

KA
1 = τ * (A + F1)

KA
2 = τ * (A + F2)

… … … … … … … …

KA
n = τ * (A + Fn)

The BLS magic allows to combine all this signatures in one signature:

KA
∑ = τ * ∑(A + Fi)

So this is just a one random looking curve point published to DLT that hides all Alice`s segment keys (lets call
it grain):

KA
∑ = KA

1 + KA
2 + KA

3 + KA
4 + KA

5 + KA
6 + … + KA

n-1 + KA
n

Exercise

Modern Cryptography Magic Workshop

Perm Winter School 2020

How to prevent double reward?

Imagine that Alice willing to download files with segment keys once received from Tracker:

KA
1 = τ * (A + F1)

KA
2 = τ * (A + F2)

… … … … … … … …

KA
n = τ * (A + Fn)

The BLS magic allows to combine all this signatures in one signature:

KA
∑ = τ * ∑(A + Fi)

So this is just a one random looking curve point published to DLT that hides all Alice`s segment keys (lets call
it grain):

KA
∑ = KA

1 + KA
2 + KA

3 + KA
4 + KA

5 + KA
6 + … + KA

n-1 + KA
n

You can think of this as an accumulator – one

element that “contains” many points that we can

check whether particular point is in the set or not

Exercise

Modern Cryptography Magic Workshop

Perm Winter School 2020

How to prevent double reward?

Now lets imagine case when one node (say Bob) serve Alice j part of files and another node (say Bill) serve
Alice k part of files, we can represent such case with the following decomposition:

KA
∑ = ∑ KA

j + ∑ KA
k

And now, once all initial segment keys are available to Alice (from Tracker) and to Bob (from get messages
from Alice) and to validator (from Bob`s claiming transaction) each of this actors can check:

- whether particular segment key is a part of a particular grain?
- does this particular grain was spent?
- and if yes, does it was spent fully or partially?

Exercise

Modern Cryptography Magic Workshop

Perm Winter School 2020

KA
∑ = ∑ KA

j + ∑ KA
k + ∑ KA

l

KA
∑ KA`

∑

KA
j

KA``
∑

KA
k KA

l

O

Finally this was “spent” by Ben

At first this was “spent” by Bob

Later this was “spent” by Bill

time

