

NATIONAL RESEARCH UNIVERSITY

Credit Risk Evaluation in the Residential Mortgage Market

Agatha Poroshina

Evgeniy Ozhegov

Department of Applied Mathematics and Modeling in Social Systems, Group for Applied Markets and Enterprises Studies

Perm Winter School, January 30th 2014

Outline

- 1. Motivation
- 2. Stylized Facts
- 3. Literature Review
- 4. Research Questions
- 5. Methodology
- 6. Data Description
- 7. Empirical Results
- 8. Conclusions

This study was carried out with support from "The National Research University Higher School of Economics' Academic Fund Program in 2013-2014, Research Grant No. 12-01-0130 "

Motivation of Research

Internal Risk-Based Approach

Russian mortgage crisis 2008-2009 The importance of understanding drivers to mortgage defaults The shortcomings of credit risk techniques PD, LGD, EAD, M The experience of developing IRB-systems in Russian bank practice is limited

Stylized Facts

- 1. Probability of default (PD).
- 2. Default 90 days delinquent.
- 3. The absence of the concept of 'mortgage default' in Russian legislation.
- 4. Default drivers:
 - sociodemographic information
 - terms of mortgage contract
 - macroeconomic conditions

Literature Review

Bhutta, Dokko, Shan, 2010, Federal Reserve Board

- Classical binary choice models (single-equation models)

Follain (1990, AREUEA Journal); Rachils, Yezer (1993, Journal of Housing Research)

- Mortgage lending process consists of related or sequentially dependent mortgage lending decisions (multiple-equation models)
- Theoretical model of mortgage lending process consists of multipleequation system

Phillips et al.(1994,1996, Journal of Real Estate Finance and Economics), Ross (2000, Journal of Real Estate Economics), Bajari et. al.(008, National Bureau of Economic Research) etc.

 Isolated modeling processes of the credit underwriting and default leads to biased parameter estimates (sample selection bias)

Literature Review

LaCour-Little, Maxam (2001, Journal of Real Estate Finance and Economics), LaCour-Little et al. (2002, Journal of Real Estate Research)

 Higher predictive power of nonparametric models (kernel regression) for prepayment and default comparing with parametric ones

Stolbov (2012, Journal of NEA), Sternik (2009, Journal of NEA)

- Discussion of triggers of Russian mortgage crisis 2008-2009

Strategy of mortgage residential lending development to 2030, Polterovich, Starkov (2007, Economics and Mathematical methods):

- Discussion of the strategy to develop Russian mortgage market
- Discussion of the strategy of large-scale mortgage based on the transplantation of modified branch of the savings bank and provided model results for Russian market.

Research Questions

- What are determinants of mortgage default within an empirical application to the Russian residential mortgage market?
- 2. Is there difference in results of strictly parameterized and semiparametric models?
- 3. What is the impact of sample selection bias on the default estimates?

Methodology

Methodology

1) Parametric Approach

- Single-equation model (Probit model)
- Multiple-equation model (Bivariate Probit Model with sample selection correction)

2) Semiparametric Approach

Multiple-equation model (Local Polynomial Regression with sample selection correction)

Attanasio et al., 2008, International Economic Review, Das, et al., 2003, The Review of Economic Studies

Methodology: Parametric Approach

Bivariate Probit Model with Sample Selection Correction

The bivariate probit model with sample selection correction

The classical bivariate probit model
$$y_{1} = x_{1}\beta_{1} + \varepsilon_{1}$$

$$y_{2} = x_{2}\beta_{2} + \varepsilon_{2}$$

$$y_{1} = \begin{cases} 1, if \quad y_{1}^{*} > 0, \\ 0, if \quad y_{1}^{*} \le 0. \end{cases}$$

$$y_{1} = \begin{cases} 1, if \quad y_{1}^{*} > 0, \\ 0, if \quad y_{1}^{*} \le 0. \end{cases}$$

$$y_{2} = \begin{cases} 1, if \quad y_{2}^{*} > 0, \\ 0, if \quad y_{2}^{*} \le 0. \end{cases}$$

$$y_{2} = \begin{cases} 1, if \quad y_{2}^{*} > 0, \\ 0, if \quad y_{2}^{*} \le 0. \end{cases}$$

$$y_{1}^{*} \text{ is observed only if } y_{2}^{*} = 1$$

$$y_{2}^{*} \text{ is observed for all classes}$$

0

Heckman's two-stage procedure

$$\hat{\lambda}_i(x_2\hat{\beta}_2) = \frac{\varphi(x_2\hat{\beta}_2)}{\Phi(x_2\hat{\beta}_2)}$$

 $E(y_1 \mid y_1 \text{ is observed}) = x_1 \hat{\beta}_1 + \hat{\rho} \hat{\sigma} \hat{\lambda}_i (x_2 \hat{\beta}_2)$

 $(c) \left[(0) \left(\sigma^2 - c \right) \right]$

Methodology: Semiparametric Approach

$$y_{1}^{*} = x_{1}\beta_{1} + g_{1}(x_{1}) + \varepsilon_{1}$$

$$y_{2}^{*} = x_{2}\beta_{2} + g_{2}(x_{2}) + \varepsilon_{2}$$

$$y_{1} = \begin{cases} 1, if \quad y_{1}^{*} > 0, \\ 0, if \quad y_{1}^{*} \le 0. \end{cases}$$

$$y_{2} = \begin{cases} 1, if \quad y_{2}^{*} > 0, \\ 0, if \quad y_{2}^{*} \le 0. \end{cases}$$

$$y_{1}^{*} \text{ is observed only if } y_{2}^{*} = 1$$

$$y_{2}^{*} \text{ is observed for all classes} \end{cases}$$

$$E(y_1 | x_1, y_2^* > 0) = x_1 \beta_1 + g_1(x_1) + \lambda_i(\varepsilon_1, \varepsilon_2, \hat{y}_2)$$

1, 2, 3 polynomials

Semiparametric rate , LTV*maturity	Linear contract terms
Semiparametric sociodemographic characteristics (cross-products)	Linear sociodemographic characteristics
Semiparametric fitted probability of endorsement	Linear fitted probability of endorsement
Semiparametric unemployment rate, probability of application, unemployment rate*probability of application	Linear macrovariables

Least squares estimation

Data

- 1. Aggregated regional monthly data on the AHML branch performance, mortgage market characteristics and regional macroeconomic variables for the period from 01/08/2008 to 31/08/2012.
- 2. Loan-level data from regional AHML branch (4298 applicants): borrower characteristics, terms of the mortgage contract, property characteristics, and the mortgage performance are available.
 - Reject rate=14%
 - Acceptance rate=86%
 - Issued loans 76%
 - Default rate =6% (90 days delinquency)
 - Non defaulted=94%
 - Unissued loans 24%

Variables	Description	Mean	Std. Dev.	Min	Max
	Sociodemogrpahic characteristics (4	298 applica	nts)		1
Age of borrower	Age of borrower, years	33.99	7.59	21	61
Declared income of	Monthly income of borrower (in Russian				
main borrower	rubles)	30 663.57	26 203.22	1 658.65	38 5531.4
Declared income of	Sum of monthly co-borrowers main income				
co-borrowers	(in Russian rubles)	17 654.25	11 555.85	38.33	72 800.45
	Terms of credit contract (2799	contracts)			
Loan limit	Maximum loan limit, Russian rubles	1 087 933	616 643.1	120 000	12 700 000
Loan amount	Loan amount, Russian rubles	1 040 037	573 665.9	120 000	10 000 000
Rate	Contract rate (when fixed), %	11.59	1.64	9.55	19
Maturity	Maturity of credit, months	189.05	62.17	26	360
Downpayment	Downpayment, Russian rubles	854 962.3	706 635.4	40 000	13 820 000
Flat value	Assessed value, Russian rubles	1 894 999	1 049 502	330 000	15 290 000
Monthly payment	t Monthly payment, Russian rubles		7 324.47	1 872.44	14 0381
LTV	Loan-to-value ratio	0.56	0.17	0.11	0.94
DTI	Debt-to-income ratio (for declared income)	0.45	0.18	0.06	1
Duration	Total amount of days observed in credit, days	867.22	419.67	18	1 487

Variables	Description	Mean	Std. Dev.	Min	Max
	Macrovariables (50 moths)				
Mortgage volume (10.3)		921 777.3	562309.5	116 100	2 191 000
Mortgage amount	Total amount of mortgages in the region	894.40	529.27	134	2112
Average size of mortgage in region, Russian					
Mean loan	rubles	1 152 568	251 993	899 310	1 908 200
	Median maturity for mortgage in region,				
Median maturity	months	200.79	12.81	173	222.2
	Median contract rate for mortgage in	0			
Median rate	region, %	12.97	.80	12	14.3
Mean LTV	Average LTV in region	0.58	0.03	0.48	0.65
Mean DTI	Average DTI in region	0.35	0.01	0.33	0.37
	Average price for 1 square meters in region,				-
Mean m2 value	Russian rubles	38 622.76	6 165.80	28 782	51 304
Lodging coefficient	Housing price to income ratio, years	3.39	0.71	2.57	4.65
Unemployment rate	Quarterly regional unemployment, %	8.43	1.50	6.3	10.9

Variables	Total (%)
Sociodemogrpahic characteristics	(4298 applicants)
Male	
male	1879 (43.7%)
female	2419 (56.3)
Income of main borrower	
not declared	2918 (67.9%)
0-9999	118 (2.8%)
10000-19999	376 (8.8%)
20000-39999	597 (13.9%)
>=40000	289 (6.7%)
Income of co-borrowers	
not declared	3724 (86.6%)
0-9999	159 (3.7%)
10000-19999	225 (5.2%)
>=20000	190 (4.4%)
Family status	
not declared	46 (1.1%)
single	1220 (28.4%)
married	2358 (54.9%)
widowed	56 (1.3%)
divorced	618 (14.4%)

Variables	Total
Sociodemogrpahic characteristics (4	298 applicants)
Activity category	
not declared	138 (3.2%)
unemployed	1 (0.0%)
soldier	13 (0.3%)
hired employee	3963 (92.2%)
entrepreneur	39 (0.9%)
state employee	144 (3.4%)
Education level	205 (4.8%)
not declared	65 (1.5%)
elementary education	1748 (40.7%)
secondary education	138 (3.2%)
incomplete higher education	2142 (49.8%)
higher education	

Variables	Total
Terms of credit contract (2799 contracts)	
Type of rate	
adjusted	378 (13.5%)
fixed	2421 (86.5%)
Maturity	
<120 moths	181 (6.47%)
120-179	595 (21.26%)
180-239	1 106 (39.51%)
240-299	690 (24.65%)
>=300	227 (8.11%)
TV	
<0.5	968 (34.58%)
0.5-0.7	1 531 (54.70%)
>=0.7	300 (10.72%)
DTI	2 550 (68.96%)
<0.2	41 (1.11%)
0.2-0.4	505 (13.66%)
0.4-0.6	379 (10.25%)
0.6-0.8	160 (4.33 %)
>=0.8	63 (1.70%)

Empirical Results

Predictive power of mortgage default parametric and semiparametric models are almost the same

right predictions 94.5% and 94.4%

AUC are not statistically different for probit, logit, BVP models, but fitted probability of endorsement is statistically significant in BVP with sample selection correction models

 There is sample selection bias. The credit underwriting and mortgage default processes should be modeled jointly.

PD is higher for male, borrowers with non declared family status or single, state employees.

Empirical Results

PD is higher with higher rate, for loans with maturity less than 15 years, higher loan age.

Not declared income of main borrower is statistically significant in PD. However PD of such borrowers are less then borrowers with small income (< 10 000).

PD increases when average price for 1 square meters in region increases.

- 1. Parametric and semiparametric estimations of credit risk have almost the same predictive power.
- The joint modeling the credit underwriting and mortgage default processes allows to correct for sample selection bias.
- 3. Obtained results can be used to develop the effective risk management systems in credit organizations.

Thank you for your attention!

AMPoroshina@gmail.com

27, Lebedeva str., Perm, Russia, 614000 www.hse.ru