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Market microstructure

 Market microstructure “is devoted to
theoretical, empirical, and experimental
research on the economics of securities
markets, including the role of information in
the price discovery process, the definition,
measurement, control, and determinants of
liquidity and transactions costs, and their
implications for the efficiency, welfare, and
regulation of alternative trading mechanisms
and market structures” (NBER Working Group)



Why should market microstructure be

relevant for risk and stress testing?
Connection between microscopic and
macroscopic time scales
Temporary liquidity crises
Price impact
Liquidity risk

Cire sales

Institutional design makes the system more

robust: e.g. a clearinghouse for CDS (Duffie and
Zhu, Cont)



Micro-macro connection

Financial markets are intrinsically unstable and display large price fluctuations
(Mandelbrot, Fama, Mantegna and Stanley, etc)

The origin of these short time scales large price fluctuations is weakly related
to news (see, e.g. Bouchaud et al 2009)

There is an intriguing evidence that individual trade price returns have the
same properties as returns on longer time scales

Is microstructure important to explain and model stylized facts? (fat tails,
clustered volatility, multifractality, etc)
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An extreme example: the flash crash

May 6, 2010
Initiated at E-mini S&P 500 futures
Price drop of 1% per minute

10,800

Contagion to other assets: ETF,
Indices, and then stocks: the 20 )
millisecond cascade

DIIA

10,400

S&P S0

Over 20,000 trades across more

than 300 securities were executed — o
at prices more than 60% away from | e
their values just moments before.
Many at a penny or less, or as high oo | : S— _ I
as $100,000, before prices of those omomme e

securities returned to their “pre-
crash” levels.

By the end of the day, major

futures and equities indices . , o ,
This figure presents end-of-minute transaction prices of the Dow Jones Industrial Average
“recovered” to close at losses of (DJIA), S&P 500 Index, and the June 2010 E-Mini S&P 500 futures contract on May 6, 2010

i between 8:30 and 15:15 CT.
about 3% from the prior day. stwsen 8:30 and 15



An isolated event? (from Nanex)

* All listed equities for 2006-2011 searching for
potential "mini crashes" in individual stocks.

Year

2011
2010
2009
2008

2007
2006

— To qualify as a down(up)-draft candidate, the stock
had to tick down (up) at least 10 times before ticking
up (down)-- all within 1.5 seconds and the price
change had to exceed 0.8%.

Down Drafts Up Drafts
Count Download All Examples Count Download All Examples
69+ Download 70+ Download
1041 Download View 777 Download View
1,462 Download View 1,253 Download View
4,065 Download View 4,354 Download View
2,576 Download View 2,456 Download View
254 Download View 208 Download View



Systemic instability FROM INSTITUTIONAL DESIGN?

5/9/11 9:53 AM
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Regulation NMS was implemented in 2007
Consider the NYSE Hybrid Market rollout:
- Hybrid Phase Il - COMPLETED rollout January 24, 2007

- Hybrid Phase IV - COMPLETED rollout February 27, 2007

Note that prior to Feb 2007, the NYSE had never been a reporting exchange in any incident.
From Nanex



Limit order book

* Many stock exchanges (NYSE, LSE, Paris) works
through a double auction mechanism

* Order book data are fundamental to investigate
the price formation mechanisms
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B cancellation/expiration of a limit order




Representation of limit order book dynamics
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(Ponzi, Lillo, Mantegna 2007)



MARKET REACTION TO TEMPORARY
LIQUIDITY CRISES

The market reaction to large spread changes (LSE stocks).

: Q: How the market relaxes to the “normal”
as . . g _
state after a liquidity crisis?
Ol Mo
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» . Excess spread
. time i P P _

A: The spread (but also the limit order book) %"’: 10"§

decays on average to the “normal” value by =

following a very slow dynamics § |
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Persistence

* Also order flow (net demand imbalance) is
persistent and correlated in time as a result of
order splitting and herding
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Decomposition of the autocorrelation
in a splitting and a herding
component (at the broker level)

Autocorrelation of signs (buy vs
sell) of market orders



Liquidity RISK

X The practice of marking to market the value of a
portfolio might be misleading if either the assets
are illiquid or the position must be unloaded
quickly

X |t has been suggested to use a mark to liquidity
approach (Acerbi and Scandolo) to value a
portfolio. Up to now an interesting theoretical
exercise

X This requires a market impact model in

+Normal situations

4+ Distressed market state




MARKET IMPACT

 Market impact is the price reaction to trades
* There are different types of market impact
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* Minimizing impact of the execution of a large trade means
minimizing cost

* A satisfactory theory of market impact of large trade is still
lacking, but it is key for assessing liquidity risk



Why market impact?

4+ The impact of trades reveals some private information (Orders
do not impact prices. It is more accurate to say that orders forecast

prices” (Hasbrouck 2007))
4+ Impact is a statistical effect due to order flow fluctuations
(zero-intelligence models, self-fulfilling prophecy)

Statistically reconstructed price impact
temporal profile of large orders by all brokers  COBME _
at LSE and BME (using brokerage data) I Sac B = o ol S _

Empirical evidence of

= Square root dependence of total impact
from order size

= Reversion of price at 2/3 of the peak

We recently developed a model for
impact reproducing these facts (Farmer R " T B CR
et al 2011) See also Bouchaud et al

2011

—_



Fire sales or distressed selling

* In an extremely distressed situation a company can be forced to
sell large volumes as soon as possible

I”

 Market conditions and liquidity dramatically change and “norma
market impact is not anymore appropriate

* Other subtle effects, such as a dramatic change in correlations
during fire sale events (see Cont et al 2011). Uncorrelated assets
can become strongly correlated (LTCM, August 2007, etc)

* Understanding market impact in

distressed markets is critical to
assess liquidity risk

EMWA correlation between two ETF of the the S&P

500: SPDR XLE (energy) and SPDR XLK (technology) o Sowans o



A tangled web

* “A transaction in the market affects more than
the parties involved in the transaction itself,
since the price determined in the transaction
Is used to price other assets and
obligations” (Shin, 2008)

* At a systemic level one must take into account
the similarity of portfolios across banks in
assessing the effective role of diversification
(e.g. hedge funds in August 2007)



Outline

Why does price move? The Kyle mode
Market impact: phenomenology and modeling

The persistence of order flow

— Market efficiency
— Optimal execution
— Origin of correlations

Toward an ecology of financial markets



Strategic model: Kyle (1985)

The model describes a case of information
asymmetry and the way in which information
is incorporated into price.

It is an equilibrium model

There are several variants: single period,
multiple period, continuous time

The model postulates three (types of) agents:
an informed trader, a noise trader, and a
market maker (MM)



The terminal (liquidation) value of the asset is
v, normally distributed with mean p, and
variance 2.,.

The informed trader knows v and enters a
demand x

Noise traders submit a net order flow u,
normally distributed with mean 0 and variance
OZU.

The MM observes the total demand y=x+u and

then sets a price p. All the trades are cleared
at p, any imbalance is exchanged by the MM.



 The informed trader wants to trade as much
as possible to exploit her informational
advantage

* However the MM knows that there is an
informed trader and if the total demand is
large (in absolute value) she is likely to incur in
a loss. Thus the MM protects herself by setting
a price that is increasing in the net order flow.

 The solution to the model is an expression of
this trade-off



Informed trader

 The informed trader conjectures that the MM
uses a linear price adjustment rule p=Ay+u,
where A is inversely related to liquidity.

 The informed trader’s profit is
m=(v-p)x =x[v-A(u+x)-u]
and the expected profit is
E[mt]=x(v-Ax-n)
 The informed traders maximizes the expected
profit, i.e.
x=(v-u)/2\

* |n Kyle’s model the informed trader can loose
money, but on average she makes a profit



Market maker

* The MM conjectures that the informed trader’s
demandis linearinyv, i.e. x=0+pv

* Knowing the optimization process of the
informed trader, the MM solves

(v-u)/ 2 =0.+pv
o=—W/2\ B=1/2A
* As liquidity drops the informed agent trades less
* The MM observes y and sets

p=E[v|y]



Solution

e [f Xand Y are bivariate normal variables, it is

E[Y | X=X]=MY+(Oxy/0x2)(X'Mx)
 This can be used to find

E[v|y]=E[v|u+o+pV]
e The solution is

o, o,
a=-p _§ U= Py = Z_;
0



Solution (I1)

The impact is linear and the liquidity increases

with the amount of noise traders

1 |2,
p=po+5 ?y

The informed agent trades more when she can
hide her demand in the noise traders demand

0,2

== py)y 5

The expected profit of the informed agent
depends on the amount of noise traders

£l 2

The noise traders loose money and the MM
breaks even (on average)



Kyle model - summary

* The model can be extended to multiple
periods in discrete or in continuous time

 The main predictions of the model are

— The informed agent “slices and dices” her order
flow in order to hide in the noise trader order flow

— Linear price impact
— Uncorrelated total order flow
— Permanent and fixed impact



Price formation and random walk

- Random walk ———— :

1500

* Price dynamics is often modeled
in terms of a random walk

* This process is mechanically
determined by the interplay between

. lq) 3 1988 1993 1998 2003
order flow and price response 8 time

» Specifically, from a statistical point of view, price dynamics is
determined by three components
— The market structure

— The (unconditional) price response to individual transactions (or
events) -> Price (or market) impact as a function of volume

— The statistical properties of the flow of orders initiating transactions

)

=

=)
T

500

S&P 500 Index




Current paradigm

 There are two types of traders: informed and uninformed

 |Informed traders have access to valuable information about
the future price of the asset (fundamental value)

* Informed traders sell (buy) over- (under-)priced stocks
making profit AND, through their own impact, drive quickly
back the price toward its fundamental value

* In this way information is incorporated into prices,
markets are efficient, and prices are unpredictable



price

Current paradigm
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s this the right explanation?
Orders of magnitude

* Information
— How large is the relative uncertainty on the fundamental value? 103

or 1 (Black 1986)
— Financial experts are on the whole pretty bad in forecasting earnings
and target prices

* Time
— Time scale for news: 1 hour-1day (?)
— Time scale for trading: 10-1s:100s
— Time scale for market events: 10-2:101s
— Time scale for “large” price fluctuations: 10 per day

* Volume
— Daily volume: 103:102 of the market capitalization of a stock

— Volume available in the book at a given time: 104:10 of the market

capitalization
— Volume investment funds want to buy: up to 1% of a company




Consequences

* Financial markets are in a state of latent liquidity,
meaning that the displayed liquidity is a tiny fraction
of the true (hidden) liquidity supplied/demanded

* Delayed market clearing: traders are forced to split

their large orders in pieces traded incrementally as
the liquidity becomes available

* Market participants forms a kind of ecology, where

different species act on different sides of liquidity
demand/supply and trade with very different time
scales



Price (or market) impact

* Price impact is the correlation between an
incoming order and the subsequent price
change

* For traders impact is a cost -> Controlling
Impact

* Volume vs temporal dependence of the
Impact




Why price impact?

* Given that in any transaction there is a buyer and a
seller, why is there price impact?
— Agents successfully forecast short term price movements

and trade accordingly (i.e. trade has no effect on price
and noise trades have no impact)

— The impact of trades reveals some private information
(but if trades are anonymous, how is it possible to
distinguish informed trades?)

— Impact is a statistical effect due to order flow fluctuations
(zero-intelligence models, self-fulfilling prophecy)

“Orders do not impact prices. It is more accurate to say that
orders forecast prices” (Hasbrouck 2007)



Market impact

 Market impact is the price reaction to trades
 However it may indicate many different quantities

— Price reaction to individual trades
— Price reaction to an aggregate number of trades

— Price reaction to a set of orders of the same sign placed
consecutively by the same trader (hidden order)

— Price reaction in a market to a trade in another market
(e.g. electronic market and block market)



Volume and temporal component o
market impact of individual trades

 Market impact is the expected price change
due to a transaction of a given volume. The
response function is the expected price
change at a future time
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FIGURE 2.4 Market impact function of buy market orders for a set of five highly capitalized stocks 1 10 100 1000 10,000
traded in the LSE, specifically AZN (filled squares), DGE (empty squares), LLOY (triangles), SHEL (filled Time (trades)
circles), and VOD (empty circles). Trades of different sizes are binned together, and the logarithmic price
change's average size for each bin is shown on the vertical axis. The dashed line is the best fit of the market FIGURE 2.8 Average empirical response function R for FT during three different periods (1st and 2nd
impact of VOD with a functional form as described in Eq. 2.8. The value of the fitted exponent for VOD semester of 2001 and 2002); error bars are shown for the 2002 data. For the 2001 data, the y axis has been
isy =03. rescaled such that R coincides with the 2002 result. R is seen to increase by a factor ~2 between & = 1

and € = 100.
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Master curve for individual impact

(Lillo et al. Nature 2003)

GROUP A -> |least capitalized group
GROUP T -> most capitalized group
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Impact of individual transactions

Paris Bourse London Stock Exchange

2 (Potters et al. 2003)
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- Individual transaction market impact is a concave function of the
volume

f(v) =sign(v) |v|ﬁ fv)= Sign(v)log‘V‘

* Impact of individual transaction is NOT universal

* What is the origin of the functional form of this type of impact?



Price impact from book shape

T

Let Q(r) = / v(z) dr  indicate the cumulative number of

shares (deptﬁ) up to price returnr
A market order of size V will produce a return

V =Q(r) o= =

For example if

then the price impact is

rooc V1/1

Figure 2. Average volume of the queue in the order book for the

three stocks, as a function of the distance A from the current bad {or

ask) in a log-linear scale. Both axes have been rescaled 1n order to
collupse the curves corresponding to the three stocks. The thick dots
carrespond to the numerical model explained below, with [ = 107
and py, = 0.25. Inset: same data in log-log coordinates.



Real and virtual impact

* |s this explanation in terms of the relation between price impact
and the limit order book shape correct ?
* The basic assumptions are:
* the traders placing market orders trade their desired volume
irrespectively from what is present on the limit order book
* the limit order book is filled in a continuous way, i.e. all the
price levels are filled with limit orders

* We test the first assumption by measuring the virtual price impact,
i.e. the price shift that would have been observed in a given instant
of time if a market order of size V arrived in the market

* We test the second assumption by considering the fluctuations of
market impact



MARKET IMPACT F(V)
FOR SINGLE TRADE
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Farmer, Gillemot, Lillo, Mike, Sen (Quantitative Finance, 2004)
Weber and Rosenow (Quantitative Finance, 2006), Gerig (2007)



Fluctuations of the impact

Let us decompose the conditional probability of a
return r conditioned to an order of volume V as

p(r|V) = (1 =g(V))o(r) + g(V)f(r|V)

and we investigate the cumulative probability

F(r>X|V) = /Xoof(r\V) dr

for several different value of V.

This is the cumulative probability of a price return r
conditioned to the volume and to the fact that price moves



. Different curves
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* The role of the transaction volume is negligible. The volume is important in
determining whether the price moves or not

* The fluctuations in market impact are important




e The impact function is NOT deterministic and the
fluctuations of price impact are very large.

e These results show that the picture of the book as
an approximately constant object is substantially

-

* Central role of fluctuations in the state of the book

* How can small volume transactions create large
price changes ?
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 Large price changes are due to the granularity of
supply and demand

* The granularity is quantified by the size of gaps in
the Limit Order Book £



Origin of large price returns

* First gap
distribution (red)
and return
distribution (black)
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Large price returns are caused by the
presence of large gaps in the order book



Tail exponents (rarmer etal 2004)
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A similar exponent describes also the probability density of the
successive gaps



Walking up the book?

- The analysis of transactions in both large and small tick size LSE
stocks reveal that the “walking up” of the book, i.e. a trades that
involves more than one price level in the limit order book, is an
extremely rare event

_-____-

44% 49% 5.8% 0.80% 0.15% 0.026% 0.22%
VOD 64% 34% 1.7% 0.094% 0.010% 0.0002% 0.19%

* This again strengthens the idea that market order traders strongly
condition their order size to the best available volume

* Thus the use of the instantaneous shape of the limit order book for
computing the market liquidity risk can be very misleading



Financial markets are sometimes found in a
state of temporary liquidity crisis, given by
a sparse state of the book. Even small
transactions can trigger large spread and
market instabilities.

* Are these crises persistent?
e How does the market react to these crises?

 What is the permanent effect of the crises
on prices?

47



Persistence of gap size

loo_ T T T

autocorrelation

10’ 10! 10° !
lag (number of trades)

Fig. 4. Autocorrelation function of the first gap size for bids (g—1(t)) and offers (g1 (t)) in a log-log
plot. The data refer to Astrazeneca.

Table 1. Correlation coefficient of the first three gap size g; on the buy side (i = —3, -2, —1) and
on the sell side (z = 1,2, 3) of the limit order book. The data shown refer to the stock Astrazeneca.

p g3 92 91| o g2 g3
g5 | 100 035 024010 008 0.08
g |l 035 1.00 027|011 008 0.08
g1 024 027 100|015 015 0.13
g1 010 0.11 0.15 | 1.00 0.33 0.30
g2 | 008 008 015|033 1.00 0.41
gs | 0.08 008 013030 041 1.00

48



Market reaction to temporary liquidity crises

« We quantify the market reaction to large spread changes.

e The presence of large spread poses challenging questions to the
traders on the optimal way to trade.

e Liquidity takers have a strong disincentive for submitting market
orders given that the cost,
the bid-ask spread, is large N
e Liquidity provider can |
profit of a large spread by
placing limit orders and
obtaining the best position. Am,
However the optimal order y !
placement inside the sprea bid

ask

price

a nontrivial problem. t Hme t+e
e Rapidly closing the spread -> priority but risk ot informed traders
e Slowly closing the spread -> “testing” the informed traders but
risk of losing priority



G(t] A) (ticks)

We wish to answer the question: how does the spread s(t) return to anormal value after a

spread variation?
To thisend we introduce the quantity

G(T|A) =FE(s(t+7)|s(t) —s(t—1) =A) — E(s(t))
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G(T|A) ~ 779 0~0.4—-0.5

Obizhaeva and Wang (2005) postulate an exponential decay
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Permanent impact

impact

(AmO)
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Permanent impact is roughly proportional to immediate impact




Market order flow

e Let us turn our attention to order flow

*We consider market orders, i.e. orders to buy
at the best available price triggering a trade

* We consider the symbolic time series
obtained by replacing buy orders with +1 and
sell orders with -1

* The order flow is studied mainly in event time
¥l 41,-1,-1,-141 -1 41 4141 -1 -1 40

* We consider the sign in order to remove any
effect of the time persistence of trading volume



autocorrelation

Order flow dynamics

Time series of signs of market
orders is a long memory process
(Lillo and Farmer 2004, Bouchaud
et al 2004)
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* How is this finding consistent with linear
unpredictability of returns ?

* Why is the order flow a long-memory process ?



Limit Orders

autocorrelation
autocorrelation
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Cancellations
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The sign time series of the three types of orders
is a long-memory process

Hurst exponent ==———=p>

(

\

Hypo = 0.69540.039
H,, = 0.716 +0.054

H,., = 0.768 +0.059



Long memory and efficiency

« How can the long memory of order flow be compatible
with market efficiency?

e |n the previous slides we have shown two empirical facts

e Single transaction impact is on average non zero and
given by

E[r‘v] =sign(v)f(v)=¢f (v)

e The sign time series is a long memory process

Elee,, |=17

I 1+7



Naive model

e Consider a naive random walk model of price
dynamics

Pigg— P, == gtf(vt)'l' 1,
o |t follows that
Elrr,  |xElee,  |=17

I+T 1 t+7

 If market order signs €, are strongly correlated in

time, price returns are also strongly correlated,
prices are easily predictable, and the market
inefficient.



* |tis not possible to have an impact model
where the impact is both fixed and permanent

 There are two possible modifications

— A fixed but transient impact model (Bouchaud et
al. 2004)

— A permanent but variable (history dependent)
impact model (Lillo and Farmer 2004, Gerig 2007,
Farmer, Gerig, Lillo, Waelbroeck)



Fixed but transient impact model (Bouchaud et al 2004)

The model assumes that the price just after the (t-1)-th transaction is

D, =D+ EGO(k)gt—kf(Vz—k) + noise
k=1

and return is

r.=p..,—-P =G,(De f(v,)+ E[Go(k +1) -G, (k)le,_ . f(v,_,) +noise

k=1

where the propagator G,(k) is a decreasing function.

The propagator can be chosen such as to make the market exactly efficient. This can be done
by imposing that the volatility diffuses normally. The volatility at scale / is

/
V, = E[(p,., - p.)*1= DG = )+ UGy (£ + j) = Gy()IF +2A(0) + =

j=0 j>0

where A is a correlation-induced contribution



The correlation in the order flow decays as a power law with exponent y

Assume that Gy (@) itself decays at large € as a power law, 027 ?. When B,y < 1,
the asymptotic analysis of A(€) yields:

A@) ~ Tocol(y, f)&* 27 (2.27)

where I > 0 is a certain numerical integral. If the single trade impact does not decay
(p = 0), we recover the above superdiffusive result. But as the impact decays faster,
superdiffusion is reduced, until f = f. = (1 — y)/2, for which A(€) grows exactly lin-
early with € and contributes to the long-term value of the volatility. However, as soon
as f exceeds f., A(€) grows sublinearly with €, and impact only enhances the high-
frequency value of the volatility compared to its long-term value ¥?, dominated by
“news.” We therefore reach the conclusion that the long-range correlation in order flow
does not induce long-term correlations nor anticorrelations in the price returns if and
only if the impact of single trades is transient (f > 0) but itself nonsummable (f < 1).
This is a rather odd situation in which the impact is not permanent (since the long-
time limit of G 1s zero) but is not transient either because the decay is extremely slow.
The convolution of this semipermanent impact with the slow decay of trade correlations
gives only a finite contribution to the long-term volatility. The mathematical constraint
B = B, will be given more financial flesh later.



The model is able to make predictions on the response function defined as
Rf = E[En(prmf - pn)]

which can be re-expressed in terms of the propagator and of the order sign correlation C,

Re=Go@) + Y, Go(@—)C;+ Y [Go(@+j) — Go(NIC;
O<j<@ j>0

From a mathematical point of view, the asymptotic analysis can again be done when
Go(€) decays as o2 ?. When f+y < 1, one finds:

r(-7) r oz
TATQ=-p—p) |sinzp ~ sinz(l—f—7)

Ro o1 Toco ‘ g\Pr (2.29)

where we have explicitly given the numerical prefactor to show that it exactly vanishes
when f = f., which means that in this particular case one cannot satisfy oneself with
the leading term. When f < f., one finds that R, diverges to +oc for large €, whereas
for f > ., R, diverges to —oo, which is perhaps counterintuitive but means that when
the decay of single trade impact is too fast, the accumulation of mean reverting effects
leads to a negative long-term average impact—see Figure 2.7. When f is precisely equal
to f., R¢ tends to a finite positive value R ,: The decay of single trade impact precisely
offsets the positive correlation of the trades.
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History dependent, permanent impact
model

 We assume that agents can be divided in three
classes

— Directional traders (liquidity takers) which have large
hidden orders to unload and create a correlated order
flow

— Liquidity providers, who post bid and offer and attempt
to earn the spread

— Noise traders

* The strategies of the first two types of agents will
adjust to remove the predictability of price changes



Model for price diffusion

We neglect volume fluctuations and we assume that the naive model is modified as

Piyg— P ENL= H(Et - gz) + 1, gt - Et—l[gf‘g]

where Q is the information set of the liquidity provider.

Ex post there are two possibilities, either the predictor was right or wrong

Let g%, (q7,) be the probability that the next order has the same (opposite) sign
of the predictor and r*, (r,) are the corresponding price change



* The efficiency condition E, ,[r,|€2]=0 can be
rewritten as

q'r —q 17 =0

* The market maker has expectations on g,

and q, given her information set €2 and

adjusts r, and r in order to make the
market efficient

----- > MARKET EFFICIENCY
ASYMMETRIC LIQUIDITY MODEL



Empirical evidence of asymmetric liquidity
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A linear model

The history dependent, permanent model is completely defined when
one fixes

- the information set Q2 of the liquidity provider
- the model used by the liquidity provider to build her forecast ¢,

As an important example we consider the case in which
- the information set is made only by the past order flow
- the liquidity provider uses a finite or infinite order autoregressive
model to forecast order flow

K
h, = H(gt - Eaigti) + 1,

=1



If the order flow is long memory, i.e. E[¢g,,.|~7 the optimal
parameters of the autoregressive model are ¢, =k > =k""and the
number of lags K in the model should be infinite.

If, more realistically, K is finite the optimal parameters of the
autoregressive model follows the same scaling behavior with k

Under these assumptions and if K is infinite the linear model
becomes mathematically equivalent to the fixed-temporary model
(or propagator) model by Bouchaud et al. with

i—1
fa; =G(i+1)—G@) or G(i)=0[1-) a]

Jj=1



Impact models and
optimal execution



Propagator model

@ A persistent order flow is incompatible with market efficiency if the market
impact is fixed and permanent

@ Two modifications has been proposed:

e The impact is fixed but temporary (propagator model, Bouchaud et al 2004)
e The impact is variable (i.e. history dependent) but permanent (Lillo and
Farmer 2004)

@ The two models are equivalent under some conditions (Bouchaud, Farmer,
and Lillo 2009)

@ The propagator model assumes that

Sn=5 0o+ > enif(vak)Go(k) + Y me (5)

or

Snt1— Sn = Go(1)enf(va) + Y [Go(k + 1) — Go(Kk)]en—if(Va—k) + 1 (6)

k=1

Persistence of order flow: origin, market ecology, and optimal execution



Objective function

@ An investor has X shares to trade in N time periods. Let vk (k=1,...,N)
be the (signed) number of shares to be traded in interval k. Let Sx be the
price at which the investor trades at interval kK and Sy the price before the
start of the execution

@ One very used objective function is the implementation shortfall defined as

N

C(v) = Z vk Sk — XS0 (7)

k=1
I.e. the difference between the cost and the cost in an infinitely liquid
market.

@ The implementation shortfall is in general a stochastic variable, therefore
one often wants to minimize E[C(v)]. This assumes a risk neutral profile

@ Almgren and Chriss (2000) introduced a risk term in optimal execution by
setting the problem

v’ =arg mvin(E[C(v)] + AVar[C(v)]) (8)

where X is an (investor dependent) risk aversion parameter. By changing A
one obtains an efficient frontier

Persistence of order flow: origin, market ecology, and optimal execution



Optimal execution with propagator model

@ We assume that propagator model describes market impact. The expected
implementation shortfall is

N k

E[C(v)] =) wlY_ f(v)Go(k —J)] (9)

k=0  j=0

@ We now assume that instantaneous impact is linear, f(vx) = Oxvk. We can
rewrite

E[C(V)]=2) 6kGo(lk — j)viv; = v Tv. (10)
k.
where 7 is a Toeplitz matrix (diagonal constant)

@ We thus have a quadratic optimization problem (as in portfolio
optimization)

v =argminv'Zv  s.t. Z ve=1"v=V (11)
k

that can be solved with a Lagrange multiplier with solution

N vV

—1

\'J

Persistence of order flow: origin, market ecology, and optimal execution



@ The solution is symmetric around N /2 (see also Alfonsi, Schied, Slynko
2011)

@ For an exponential Gy one reobtains the solution of Obizhaeva and Wang
2006

@ It can be solved analytically also considering a risk term and assuming a
Gaussian noise for 1 in the propagator model

Figure: An example of theoretical optimal solution of the optimal execution problem.
As a function of real time, the plot shows the amount of shares to be traded (in
arbitrary units).

Persistence of order flow: origin, market ecology, and optimal execution



Calibration on real data

@ We calibrate the model on real data from the LSE (two sets, 2000-2002
and 2011 data)

@ We consider intervals of 5 minutes and execution for the whole day. We
take into account intraday periodicities.

VOD - 5 minute aggreg.

AZN - 5 minute aggreg.
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Figure: Impact (top) and propagator (bottom) from 5 min imbalance data
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Optimal trading profile

VOD - 1% of daily volume

AZN - 1% of daily volume
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Figure: Optimal solution for two stocks

The optimal execution for a buy trade includes buys and sells !! (see also
Alfonsi, Schied, Slynko 2011). The cost is positive (no price manipulation)

Persistence of order flow: origin, market ecology, and optimal execution




Including spread costs

In this derivation we have neglected any cost term related to trading (fees,
spread). While fixed and proportional fees do not affect the qualitative
properties of the results, spread costs change them significantly.

The optimization with spread costs becomes

Flv] = E[C(v)] + BA(v) =v'Zv + E' |v|. (13)

where E is a vector describing the spread cost during execution

The absolute value prevents an analytical solution and we use numerical
optimization

25 VOD - 1% of daily volume AZN - 1% of daily volume
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Figure: Spread costs regularize the solution (no sells for a buy program)
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Mor

Participation rate (%)

Including the risk term

e risk aversion leads to more trading at the beginning of the program

VOD - 1% of daily volume

AZN - 1% of daily volume
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Figure: A =0 (top), A = 0.2 (bottom left), A = 0.9 (bottom right)
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Efficient frontier
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How the market adapt to your trading?

 We decompose the total impact of a given
type of order book event into a contribution
from the same trader and a contribution from

all other trader.
<(Pt—£ - Pt)I(Wt = 7Tl)et)'

Response function -> R,,(¢) =

P(m;)
:Rsame(é) <Z§'——€t_l(pt’-l - Pt’)I(bz' = bt)I(Trt = 7r1)et>
T P(m) - |
Rls_.:?me(g) + :Rfirlff(g) — 3‘1(€)
:Rdiﬁ(f) . <Z§:ft—1(pt'—l - pt')I(bt’ 7é bt)I(ﬂ't = 7T1)6t>

P(ﬂ'l)

(with B. Toth, Z. Eisler, J. Kockelkoren, J.-P. Bouchaud, and J.D. Farmer, 2011)



Market member (broker) data

* The investigated markets are:
e Spanish Stock Exchange (BME) 2001-2004
e London Stock Exchange (LSE) 2002-2004

(I Firms are credit entities and investment firms
which are members of the stock exchange and
are entitled to trade in the market.

0 Roughly 200 Firms in the BME and
LSE (350/250 in the NYSE)

? | ]
:} member mem h
I \
|
E W SR = |
m E— @
\\\> M
mem
member

/“*%—%f

VALOR

TEF
TEF
ANA
CAN
CAN
VIS
SOL
ALB
ALB
ACX
AGS
AGS
ACS
SCH
CTE
CTE
CTE
FER
SGC
ACR
ACR
DRC
DRC
AUM

VOLUMEN PRECIO SOCCOM  SOCVEN HORA FECHA
236 2187 9405 9858 90108 01/06/2000
1764 2187 9405 9487 90108 01/06/2000
110 3800 9839 9855 90109 01/06/2000
37 2194 9839 9578 90109 01/06/2000
151 2200 9839 9412 90109 01/06/2000
214 700 9821 9561 90109 01/06/2000
286 1299 9839 9838 90110 01/06/2000
104 2710 9839 9843 90110 01/06/2000
29 2719 9839 9419 90110 01/06/2000
97 3689 9839 9843 90111 01/06/2000
120 1445 9339 9487 90111 01/06/2000
110 1448 9839 9485 90111 01/06/2000
107 2930 9839 9863 90111 01/06/2000
11226 1045 9858 9880 90112 01/06/2000
96 1935 9839 9832 90112 01/06/2000
50 1955 9839 9872 90112 01/06/2000
14 1958 9839 9426 90112 01/06/2000
237 1296 9839 9560 90112 01/06/2000
50 3980 9820 9560 90113 01/06/2000
161 1139 9839 9487 90113 01/06/2000
47 1140 9839 9845 90113 01/06/2000
20 803 9839 9573 90114 01/06/2000
267 805 9839 9484 90114 01/06/2000
11 1649 9839 9474 90114 01/06/2000

* Investigation at the level of
market members and not of the
agents (individuals and
institutions

* The dataset covers the whole
market

* The resolution is at the level of
individual trade (no temporal

aggregation)



Response function is a delicate balance

1

Ruod(l) (ticks)
)

-2 -1

-3

= same broker
- = other brokers
+ = total

0

200

400

| (events)

600

I

-2 0 2 4 6

Ruo(1) (ticks)

-6

same broker

- other brokers

total

200

400

| (events)

600

Figure 1: The response function R, (€) and its contributions coming from the orders of the same broker
(Rsme(£)) and of different brokers (RE#(£)). (left) The case of m; = MO". (right) The case of m; = MO'. The

insets show a zoom for small £.

These two contributions very nearly offset each other, leading to a total impact that is

nearly constant in time and much smaller than both these contributions.

Dynamical ligquidity picture -> the highly persistent sign of market orders must be
buffered by a fine-tuned counteracting limit order flow in order to maintain statistical

efficiency (i.e. that the price changes are close to unpredictable, in spite of the long-
ranged correlation of the order flow).



What is the origin of long-memory in order flow?

Two explanations has been proposed

e Herding among market participants (LeBaron and Yamamoto
2007). Agents herd either because they follow the same
signal(s) or because they copy each other trading strategies.
Direct vs indirect interaction

@ Order splitting (Lillo, Mike, and Farmer 2005). To avoid
revealing true intentions, large investors break their trades up
into small pieces and trade incrementally (Kyle, 1985).
Convert heavy tail of large orders volume distributions in
correlated order flow.

Is it possible to quantify empirically the contribution of herding
and order splitting to the autocorrelation of order flow?

Note that this is part of the question on the origin of diagonal
effect raised in Biais, Hillion and Spatt (1995).



Decomposing the autocorrelation function

Assume we know the identity of the investor placing any market

order.
@ For each investor / we define a time series of market order
signs €, which is equal to zero if the market order at time t
was not placed by investor / and equal to the market order

sign otherwise
@ [ he autocorrelation function can be rewritten as

2
1 . 1 .
C(T) — N Et : E .:E;:C/t_’_,r o (N Et : E :G’t)



Decomposing the autocorrelation function

We rewrite the acf as C(7) = Copit(7) + Cherd(7) where

,7_) ZE €t+'r] o
i

t

Csplit(’r) — z (Pii(T)
Cherd(T) — Z (PU(T)

i#]

1 . o
i _ pipj
Ni(7) Zt Efdf“] PP

N' is the number of market orders placed by agent i, P' = N'/N,
NY(7) is the number of the number of times that an order from
investor / at time t is followed by an order from investor j at time

t + 7, and PY(t) = NY(1)/N



Herding or splitting?
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Figure: Left panel. The splitting and the herding term of the correlation
of MO signs (the two terms sum up to C(7)) for the first half year of
2009 for AZN. Right panel. The splitting ratio of MO signs (defined as
the ratio of the splitting term in the correlations and the entire
correlation) for the first half year of 2009 for AZN.

Splitting dominates herding (especially for large lags)




Splitting of metaorders

o In financial markets large investors usually need to trade large
guantities that can significantly affect prices. The associated cost is
called market impact

e For this reason large investors refrain from revealing their demand
or supply and they typically trade their large orders incrementally
over an extended period of time.

e These large orders are called packages or metaorders and are split
in smaller trades as the result of a complex optimization procedure
which takes into account the investor’s preference, risk aversion,
investment horizon, etc..

e \We want to detect empirically the presence of metaorders from the
trading profile of the investors and measure their impact



Model of order splitting

« There are N hidden orders (traders).

e An hidden order of size L is composed by L revealed
orders

e The initial size L of each hidden order is taken by a given
probability distribution P(L). The sign s, (buy or sell) of the
hidden order is initially set to +1 or -1 in a random way.

e At each time step an hidden order i is picked randomly
and a revealed order of sign s, is placed in the market. The
size of the hidden order is decreased by one unit..

e When an hidden order is completely executed, a new
hidden order is created with a new size and a new sign.



e We assume that the distribution of initial hidden order size
is a Pareto distribution

X
pl)=77 L=21 a>1

The rationale behind this assumption is that

1. Itis known that the market value of mutual funds is
distributed as a Pareto distribution (Gabaix et al., 2003)
2. Itis likely that the size of an hidden order is proportional to

the firm placing the order



We prove that the time series of the signs of the revealed
order has an autocorrelation function decaying asymptotically

¢ Noz—2 1
p(T) ~

a To1

TR —o n=1
~ < e o—o n=50

time lag



Testing the models

e |t is very difficult to test the model because it is difficult to have information on the
size and number of hidden orders present at a given time.
e We try to cope with this problem by taking advantage of the structure of financial
markets such as London Stock Exchange (LSE).
e At LSE there are two alternative methods of trading

- The on-book (or downstairs) market is public and execution is completely
automated (Limit Order Book)

- The off-book (or upstairs) market is based on personal bilateral exchange
of information and trading.

We assume that revealed orders are placed in the on-book
market, whereas off-book orders are proxies of hidden
orders



Volume distribution

The volume of on-book and off-book trades have different
statistical properties
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* The exponent a=1.5 for the hidden order size and the market order sign
autocorrelation exponent y are consistent with the order splitting model which
predicts the relation y=0-1.



Brokerage data: A typical inventory profile

Credit Agricole trading Santander at BME
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® Modified t-test (G. Vaglica, F. Lillo, E. Moro, and R. N. Mantegna,
Physical Review E 77, 036110 (2008).)

@ Hidden Markov Model (G. Vaglica, F. Lillo, and Rosario N.
Mantegna, New Journal Of Physics, (in press 2010)).



Detecting hidden orders
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Scaling relations of hidden orders
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Large hidden orders

The distributions of large hidden orders sizes are characterized by power law tails.

' BBVA (2104) | SAN (2086) | TEF (2062)
v,y | 23 (1927) |20 (L7:23) |19 (16;2.2)
Ny | 20 (L723) | L7 (1.420) | L7 (1.4:2.0)

¢r |15 (1317 |15 (1.3:17) |12 (L0;1.4)

Table 4.1: Tail exponents of the distribution of T', N,,.. 5, and V.., estimated with the
Hill estimator (or Maximum Likelihood Estimator). In parenthesis we report the 95%
confidence interval. The number in parenthesis nearby the tick symbol is the number of

patches detected for the considered stock.

Power law heterogeneity of investor typical (time or volume) scale

1 1
P(T> 1)~ —— PNy >2)~ — P(Vi > )~

1.3 1.8 T2
These results are not consistent with the theory of Gabaix et al. Nature 2003)
1 1 1
p(T>x)NE P(Nm>:c)~$—3 P(Vm>$)NW



Allometric relations of hidden orders

We measure the relation between the variables characterizing hidden orders by
performing a Principal Component Analysis to the logarithm of variables.

5 8 8
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10(;05 | 1|0( mlé;m (Euréé))s 169 10" 10(1'0(, l 1(1)] 1(1) N 163 1(‘)4 10° 10(1)0’ l(l)‘ 1{|)]7m (Eurcl};x 10°
BBVA (2104) SAN (2086) TEF (2062)
g1 || 1.08 (1.05;1.12) 1.06 (1.01 ;1.10) 1.07 (1.04 ;1.11)
g2 || 1.81 (1.69;1.93) 1.81 (1.68 ;1.94) 2.00 (1.88;2.14)
g3 || 0.68 (0.65;0.71) 0.68 (0.65 ;0.70) 0.62 (0.59 ;0.64)

Table 4.3: Exponents of the allometric relations defined in Eq. 4.7. The exponents
are estimated with PCA and the errors are estimated with bootstrap. In parenthesis we
report the 95% confidence interval. The number in parenthesis nearby the tick symbol is

the number of patches detected for the considered stock.



Comments

The almost linear relation between N and V indicates that
traders do not increase the transaction size above the
available liquidity at the best (see also Farmer et al 2004)

For the N,_-V_ and the T-N_ relations the fraction of variance
explained by the first principal value is pretty high

For the T-V  relation the fraction of variance explained by the
first principal value is smaller, probably indicating an
heterogeneity in the level of aggressiveness of the firm.

Also in this case our exponents (1.9, 0.66, 1.1) are quite

different from the one predicted by Gabaix et al theory (1/2,
1,1/2)



Role of agents heterogeneity

 We have obtained the distributional
properties and the allometric relations of the
variables characterizing hidden orders by
pooling together all the investigated firms

* Are these results an effect of the aggregation
of firms or do they hold also at the level of
individual firm?



Heterogeneity and power law tails

e For each firm with at least 10 detected hidden

orders we performed a Jarque-Bera test of the
lognormality of the distributionof T, N, and V

BBVA SAN TEF

T 75 (15/20) 63 (17/27) 77 (24/31)
N 90 (18,/20) 100 (27/27) 100 (31/31)
Vin 90 (18,/20) 100 (27/27) 094 (29/31)

* For the vast majority of the firms we cannot reject
the hypothesis of lognormality

 The power law tails of hidden order distributions
is mainly due to firms (size?) heterogeneity



Individual firms
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Figure 4.5: Probability density function of the standardized logarithm of the variables
T, Nuej and Viua; of the firms for which the Jarque-Bera test of lognormality cannot be
rejected. Specifically, for each stock and each variable we consider the firms for which the
lognormal hypothesis cannot be rejected (see Table 4.2). For each of these firms we com-
pute the logarithm of the variable, we subtract the mean value and divide by the standard
deviation. According to the null hypothesis these normalized variables should be Gaussian
distributed. In the figure we plot in a semi-log scale the probability density functions for
each firm (continuous lines) and we compare them with the Gaussian probability density
function (dashed line). Each column refers to a firm (from left to right, BBVA, SAN,
TEF) and each row refers to a variable (from top to bottom T, N,,,.; and V,,..;).



Order flow is a long memory process

The origin is delayed market clearing and hidden
orders

Hidden order size is very broadly distributed

Heterogeneity of market participants plays a key
role in explaining fat tails of hidden order size

Can we use the detected hidden
orders to compute the market
impact of hidden orders?



Market impact of hidden orders
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Figure 4: Average rescaled market impact R for hidden orders
shorter than 1 day as a function of N for the BME (left) and
LSE (right). Circles are the results for all hidden orders, while
squares are the results when there is a low fraction of market
orders ( fmo < 0.2) and diamonds are for when there is a large

fraction of market orders ( fro > 0.8). Dashed lines are power
law fits R ~ N7. Values of ~ are reported in Table II.

Moro, Vicente, Moyano, Gerig, Farmer, Vaglica, Lillo, Mantegna, Physical Review E 2009




Impact vs N

We find that for both groups the relation <R|N> is well described by:

(RN} = AN

Table II: Parameters of the fitting of the market impact with

Eq. 15.
I\"Iarketl Afo>08  Vimo>0.8 | Afpo<o2 Vimo<0.2
BME |063+0.17 048 £0.07| —0.63 £0.22 0.44 £0.09

LSE 017 £0.05 0.72+£0.10| —0.16 =0.14 0.64 +=0.30




Market impact versus time

5 T I I

- |O-O BME
O-O LSE

Solid lines are power-law fits while dashed lines correspond to temporary (upper) and permanent
(lower) market impact. Temporary impact R,,,,, is measured at the end of the hidden order t/T=1
while permanent impact R is obtained through an average of R(t/T) with 1.5<t/T<3. Data are
only for f,,,> 0.8.

perm

Moro, Vicente, Moyano, Gerig, Farmer, Vaglica, Lillo, Mantegna, Physical Review E 2009



R and R

perm temp

The power low fits give:

R~ (4.28 £0.21) x (£)*7*"®  (BME)
R~ (213 +£0.05) x ()" (LSE)

The drop in impact is:

R =0.51+0.22 for BME

perm/ Rtemp

R Ricmp,=0.73£0.18 for LSE

perm/ temp



Fair pricing condition

Suppose that the price after reversion is equal to the average price paid during
execution.

If during execution price impact grows like A X (t/t)? then the average price paid by the
agent who executes the order is:

1
) \ f " \ f P 4 '- \ o4
p)=p + A | /j (t/T)?d(t/T) = p: + 15

i.e. the permanent impact is 1/(1+f) of the peak impact

In our case by using the values of 3 obtained in the previous figure we get

1/(1+p) = 0.58 +0.01 for the BME and 1/(1+f) = 0.62 + 0.02 for the LSE which are

statistically similar to the ratios R ,,,/R..n,, for each market .



Toward a market ecology



Daily inventory variation time series

We quantify the trading activity of a firm in a given time
period T by introducing the inventory variation
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Cross correlation matrix of inventory
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BBVA 2003
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Trading activity is significantly cross correlated among firms



Origin of collective behavior
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* The first eigenvalue is not compatible with random trading and is therefore carrying
information about the collective dynamics of firms.

* The corresponding factor is significantly correlated with price return.

* There are groups of firms having systematically the same position (buy/sell) as the other
members of the group they belong to.



The rOIe Of Slze Few large trending firms
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Many heterogeneous reversing firms

Size = average daily fraction of volume



Inventory variation
correlation matrix
obtained by sorting
the firms in the rows
and columns
according to their
correlation of
Inventory variation
with price return = of
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h —

Herding

Herding indicator (see also Lakonishok et al, 1992)

# of buy firms

# of buy firms + # of sell firms

We infer that herding is
present in a given
group when the

probability of the
observed number of

buying or selling firms
is smaller than 5%
under the binomial null

hypothesis.
2003 2004

AL BH SH AILL BH SH
Reversing (1 day) 648 312 336 596 272 324
Uncategorized (1day) 212 108 104 192 104 88
Trending (1 day) 60 20 40 24 12 12
Reversing (15 min) 292 147 145 266 133 133
Uncategorized (15min) 102 53 49 115 63 52
Trending (15 min) 39 17 22 33 17 16
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PhD opportunity

The CALL FOR APPLICATIONS FOR ADMISSION TO PhD
PROGRAM in Mathematics for Finance at the
Scuola Normale Superiore di Pisa
is (almost) open

(see http://lwww.sns.it/en/scuola/ammissione/corsodiperfezionamento/scienze/).
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