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The Story of The Efficient Market

Weak-form efficiency
■ Future prices cannot be predicted by analyzing prices from the 

past (no TA, but FA is possible).
Semi-strong-form efficiency
■ Share prices adjust to publicly available new information very 

rapidly and in an unbiased fashion, such that no excess returns 
can be earned by trading on that information (no TA, no FA).

Strong-form efficiency
■ Share prices reflect all information, public and private, and no one 

can earn excess returns (even insiders couldn’t make it).
One of conclusions of Efficient Market Hypothesis (EMH) is pure 
exogenous point of view on price formation. Price could change only 
under information revealed, crashes could be only exogenous.
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• E. Fama (1970) “Efficient Capital Markets: a Review of Theory and Empirical Work.” J. of Finance 25 (2): 383–417
• E. Fama (1991) “Efficient Capital Markets: II.” Journal of Finance 46 (5): 1575–1617
• P. Samuelson (1973) “Proof That Properly Discounted Present Values of Assets Vibrate Randomly.” The Bell 

Journal of Economics and Management Science 4 (2): 369–374
• P. Samuelson (2006) “Proof That Properly Anticipated Prices Fluctuate Randomly.” Ind. Manag. Review 6: 41–49
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Rational agents

In its original form the Efficient Market Story assumes 
presence of the Rational Agents (Investors), who
■ are perfectly informed about the politico-economical 

situation in the world
■ can immediately process all new information and reveal 

arbitrage opportunities
■ can profit even from tiny mispricing, moving price to its 

“fundamental” value

3

Rational Agents
■ are always concentrated
■ never become tired
■ never feel greedy or scary
■ never make mistakes or even sub-optimal decisions..
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“Rational agents”

4
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Rational agents vs rational expectations

■ The modern concept of EMH doesn’t require all agents 
to be rational. It was shown that prices do fully reflect 
all available information if investors have “rational 
expectations” (Lucas, 1978). E.g. individually they 
could be irrational but, behave rational in average, as if 
all agents were rational.

■ Nevertheless this “collective rationality” also poses 
many problems when compared with reality. Even 
being rational individually, we behave irrationally as a 
crowd facing such collective effects as imitation, 
informational cascades etc. that result in herding.
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• R. Lucas (1978) “Asset prices in an exchange economy” Econometrica 46 (6): 1429–1445
See also:
• D. Sornette (2002) “Why Stock Markets Crash: Critical Events in Complex Financial Systems” Princeton Univ. Press
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Imitation and informational cascades

Imitation
Imitation (observation and replication 
of someone’s behavior) is among the 
most complex forms of learning. 
It is found in highly socially living 
species which show, from a human 
observer point of view, “intelligent” 
behavior and signs for the evolution of 
traditions and culture.
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Informational cascades
Being in the crowd infer information 
and limits rationality. People observe 
actions of others and then make the 
same choice that the others have 
made, independently of their own 
private information signals.

“Well, heck! If all you smart cookies agree, who am I to dissent?”

• S. Bikhchandani, D. Hirshleifer, I. Welch (2008) "Information cascades" The New Palgrave Dictionary of 
Economics, 2nd ed.
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Imitation in the Financial World
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Thy Neighbor’s Portfolio: Word-of-Mouth Effects
in the Holdings and Trades of Money Managers

HARRISON HONG, JEFFREY D. KUBIK, and JEREMY C. STEIN∗

ABSTRACT

A mutual fund manager is more likely to buy (or sell) a particular stock in any quarter
if other managers in the same city are buying (or selling) that same stock. This pattern
shows up even when the fund manager and the stock in question are located far apart,
so it is distinct from anything having to do with local preference. The evidence can
be interpreted in terms of an epidemic model in which investors spread information
about stocks to one another by word of mouth.

IN THIS PAPER, WE EXPLORE THE HYPOTHESIS that investors spread information and
ideas about stocks to one another directly, through word-of-mouth communica-
tion. This hypothesis comes up frequently in informal accounts of the behav-
ior of the stock market.1 For example, in his bestseller Irrational Exuberance,
Shiller (2000) devotes an entire chapter to the subject of “Herd Behavior and
Epidemics,” and writes

A fundamental observation about human society is that people who
communicate regularly with one another think similarly. There is at any
place and in any time a Zeitgeist, a spirit of the times. . . . Word-of-mouth
transmission of ideas appears to be an important contributor to day-to-day
or hour-to-hour stock market fluctuations. (pp. 148, 155)

However, in spite of its familiarity, this hypothesis about word-of-mouth in-
formation transmission has received little direct support in stock market data.2

∗Hong is from Princeton University, Kubik is from Syracuse University, and Stein is from both
Harvard University and the National Bureau of Economic Research. Thanks to the National Sci-
ence Foundation for research support, and to Rebecca Brunson and Ravi Pillai for research assis-
tance. We are also grateful for comments and suggestions from Julian Abdey, Malcolm Baker, Gene
D’Avolio, Chip Fortson, Rick Green, Rafael LaPorta, Karl Lins, Burton Malkiel, Anna Scherbina,
Andrei Shleifer, Jeff Wurgler, and the referee, as well as from seminar participants at Harvard
Business School, Boston College, the University of Texas, New York University, Columbia, North-
western, Maryland, the University of Southern California, Penn State, Syracuse, and the Western
Finance Association meetings.

1 See, for example, Ellison and Fudenberg (1995) for a formal model of word-of-mouth learning.
2 However, recent work has done much to advance the more general proposition that local peer

group effects can have important consequences for a number of other economic outcomes, including
educational attainment and participation in crime. See, for example, Case and Katz (1991), Glaeser,
Sacerdote, and Scheinkman (1996), and Bertrand, Luttmer, and Mullainathan (2000); Glaeser and
Scheinkman (2002) provide a survey with more references. Relatedly, Dumais, Ellison, and Glaeser
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Have we seen any real-life examples?
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Financial bubbles, which we have been observing for over 400 years:

Tulip mania South Sea bubble IT bubble Housing bubble
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How efficient is the real market?
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FIGURE 1 
Note: Real Standard and Poor's Composite Stock Price 
Index (solid line p) and ex post rational price (dotted 
line p*), 1871- 1979, both detrended by dividing a long- 
run exponential growth factor. The variable p* is the 
present value of actual subsequent real detrended di- 
vidends, subject to an assumption about the present 
value in 1979 of dividends thereafter. Data are from 
Data Set 1, Appendix. 

growth path for the Standard and Poor's 
series, 16-38 percent below the growth path 
for the Dow Series) only for a few depression 
years: 1933, 1934, 1935, and 1938. The mov- 
ing average which determines p* will smooth 
out such short-run fluctuations. Clearly the 
stock market decline beginning in 1929 and 
ending in 1932 could not be rationalized in 
terms of subsequent dividends! Nor could it 
be rationalized in terms of subsequent earn- 
ings, since earnings are relevant in this model 
only as indicators of later dividends. Of 
course, the efficient markets model does not 
say p=p*. Might one still suppose that this 
kind of stock market crash was a rational 
mistake, a forecast error that rational people 
might make? This paper will explore here the 
notion that the very volatility of p (i.e., the 
tendency of big movements in p to occur 
again and again) implies that the answer is 
no. 

To give an idea of the kind of volatility 
comparisons that will be made here, let us 
consider at this point the simplest inequality 
which puts limits on one measure of volatil- 
ity: the standard deviation of p. The efficient 
markets model can be described as asserting 
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FIGURE 2 
Note: Real modified Dow Jones Industrial Average (solid 
line p) and ex post rational price (dotted line p*), 
1928-1979, both detrended by dividing by a long-run 
exponential growth factor. The variable p* is the present 
value of actual subsequent real detrended dividends, 
subject to an assumption about the present value in 
1979 of dividends thereafter. Data are from Data Set 2, 
Appendix. 

that p, =E,( p*), i.e., p, is the mathematical 
expectation conditional on all information 
available at time t of p*. In other words, p, is 
the optimal forecast of p*. One can define 
the forecast error as u,= p* -pt. A funda- 
mental principle of optimal forecasts is that 
the forecast error u, must be uncorrelated 
with the forecast; that is, the covariance be- 
tween p, and u, must be zero. If a forecast 
error showed a consistent correlation with 
the forecast itself, then that would in itself 
imply that the forecast could be improved. 
Mathematically, it can be shown from the 
theory of conditional expectations that u, 
must be uncorrelated with p,. 

If one uses the principle from elementary 
statistics that the variance of the sum of two 
uncorrelated variables is the sum of their 
variances, one then has var(p*) var(u)+ 
var(p). Since variances cannot be negative, 
this means var(p) ) ?var(p*) or, converting 
to more easily interpreted standard devia- 
tions, 

(1) (p or(P*) 

This inequality (employed before in the 

“Excess volatility” puzzle
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R. Shiller (1981) “Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?” 
The American Economic Review 71 (3): 421–436

See also:
• S. F. LeRoy and R.D. Porter (1981) “The Present-Value Relation: Tests Based on Implied Variance Bounds.” 

Econometrica: Journal of the Econometric Society: 555–574
• S. F. LeRoy (2008) “Excess Volatility Tests.” The New Palgrave Dictionary of Economics, 2nd ed.

S&P 500

Real value
Ex post rational value

Dow Jones Industrial Average
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“What moves stock prices?”
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Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Major events and changes 
in S&P500 Index, 1941-1987

Largest post-war movements in 
S&P 500 Index and their “causes”

D. Cutler, J. Poterba, L. Summers (1987)  “What moves stock prices?”  
Journal of Portfolio Management 15 (3): 4–12

See also:
• G. McQueen, V. Roley (1993) “Stock prices, news, and business conditions.” Review of Fin. Studies 6 (3): 683–707
• O. Erdogan, A. Yezegel (2009) “The news of no news in stock markets”, Quantitative Finance 9 (8): 897–909
• M. Fleming, E. Remolona (1997) “What Moves the Bond Market?” FRBNY Economic Policy Review 3 (4): 31–50
• R. C. Fair (2002) “Events That Shook the Market.” Journal of Business 75 (4): 713–731
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Figure 3: Clustering of news and jumps, measured by conditional probabili-
ties a) Prob(news at time t | news at time 0), 200 minutes before and after
t = 0, ignoring overnight news. b) Prob(jump at time t | jump at time
0) and Prob(jump at time t | news at time 0). Jumps here correspond to
s = 4. Note that the probability to observe a jump after a news is actually
decreased at intermediate times. For all densities, we divided each contribu-
tion by the average daily distribution of news or jumps, such as to remove
intra-day seasonalities.

Fig. 1), clearly different from the value µ = 4 mentioned above for jumps. The
volatility pattern in the case of news is much wider than the rather narrow peak
corresponding to endogenous jumps. In both cases, we find (Figure 5) that the
relaxation of the excess-volatility follows a power-law in time σ(t) − σ(∞) ∝ t−β

(see also [22, 23]). The exponent of the decay is, however, markedly different in the
two cases: for news jumps, we find β ≈ 1, whereas for endogenous jumps one has
β ≈ 1/2. Our results are compatible with those of [22], who find β ≈ 0.35. The
difference between endogenous and endogenous volatility relaxation has also been
noted in [17], but on a very restricted set of news events. We found the value of β
to be identical, within error bars, for the two threshold values s = 4 and s = 8 (see
Fig. 5), although a three parameter fit is compatible with β(s = 8) > β(s = 4) for
jumps, as predicted by the multifractal random walk model [17] and the multiscale
feedback model of [25].

If we now average the volatility pattern around all news, we find a rather
modest peak height (the increase is only 30-40% of the baseline level), confirming
the result of figure 3 b: news are often of no real importance and only mildly affect
the price of a stock. The volatility decays with an exponent β ≈ 1/2 towards a
baseline value that is on average lower than before the news, as if news release
had, on average, a sedating effect on markets. A similar effect can be noted in
Fig. 3 b. This is however not true of jumps or of ‘strong’ news (corresponding
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Probability of having jump in price 
at time t, conditional on:
(red) news at time t=0

(black) jump at time t=0

A. Joulin, A. Lefevre, D. Grunberg, J.-P. Bouchaud (2008) 
“Stock price jumps: news and volume play a minor role.” Wilmott Magazine, Sep/Oct: 46.

Exogenous versus endogenous jumps in HF
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Figure 5: a) Relaxation of the volatility after s = 4 and s = 8 news jumps,
and power law fit with an exponent β = 1. b) Relaxation of the volatility
after s = 4 and s = 8 jumps, and power law fit with an exponent β = 1/2.
Note the difference in the y-scale between the two curves (the first point, at
t = 0, is suppressed in both cases).

There are different possible definitions of collective jumps. One is based on
the correlation matrix of jump occurrences, cij = T−1

∑
t θt

iθ
t
j − pipj, where θt

i is
one if stock i makes an s-jump in the one minute bin t and zero otherwise, pi is
the average of θt

i (i.e. the jump probability pi = T−1
∑

t θt
i) and T is the number

of bins. Most eigenvalues of c are seen to lie within the Marcenko-Pastur noise
band [26, 27], but a few stand out, in particular the ‘market’ eigenvalue with a
eigenvector v1

i close to uniform across all stocks: v1
i ≈ N−1/2, ∀i. A market jump

can be defined such that the indicator χt = N1/2
∑

i θ
t
iv

1
i is larger than a certain

threshold s′. For example s′ = 0.1 means that roughly 10% of the stocks must
jump to qualify as a market jump. Quite interestingly, we found a new ‘stylized
fact’ concerning index jumps: the cumulative distribution of χ decays as a power-
law χ−ν with exponent ν ≈ 1.5. In other words, the number of stocks involved in
a market slide is very broadly distributed. Another definition of collective jumps
is based on a standard sector classification to define a sector index; a sector jump
is such that this index exceeds a certain threshold.

Focussing first on market jumps, and for a threshold s′ = 0.1 that defines
rather loose collective jumps, we find a total of 900 jumps, but only 13% of all
individual jumps with s = 4 can be explained by these jumps, hardly more than
the 10% expected from the very definition of these jumps. Extending the period
around collective jumps to a five minute interval, one can increase this number
to 20%, but this increase is the one expected from the unconditional probability
of jumps, integrated over 5 minutes. If we include further meaningful sectors, we
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Relaxation of the volatility after 
endogenous jumps 

and power-law fit with β=0.5

Relaxation of the volatility after 
exogenous jumps 

and power-law fit with β=1
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Idea of the “reflexivity” of market

■ George Soros adapted ideas of Orlean (1980x) 
and others and proposed the concept of 
“reflexivity”, where the biases of individuals enter 
into market transactions, potentially changing the 
perception of fundamentals of the economy. 

■ When markets are rising or falling rapidly, they are 
typically in the state of disequilibrium rather than 
equilibrium, and that the conventional economic 
theory of the market (EMH) is not valid in these 
situations. 

■ Reflexivity asserts that prices do in fact influence 
the fundamentals and that these newly-influenced 
set of fundamentals then proceed to change 
expectations, thus influencing prices; the process 
continues in a self-reinforcing pattern.

■ In other words, the underlying market 
mechanisms create positive feedback loops 
that cause prices to diverge from equilibrium.

13
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Target

We use a class of self-excited models that combines (i) external 
influence on system with (ii) feedback mechanisms to test in a 
technical way the hypothesis of reflexivity (endogeneity) of the market.

We will show that market is operating close to criticality, implying 
significant role of endogenous feedback mechanisms in price 
formation process and increase of this role over last 10 years due to 
growth of AT and HFT.

Moreover we will introduce the metric that allow one to estimate 
quantitatively the relative proportion between endogenous and 
exogenous price movements.

We will illustrate the power of this metric in distinguishing between 
exogenous (triggered by news) and endogenous (resulted from 
feedback) shocks on market.

14
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Data: E-mini S&P 500 Futures

E-mini S&P 500 Futures Contract represents 
a fraction of the normal S&P 500 futures contract.

Some facts:
■ Ticker symbol: ES
■ Exchange: Chicago Mercantile Exchange
■ Contract months: Five months in the March Quarterly Cycle 

(Mar, Jun, Sep, Dec)
■ Trading time: 23.25 hours/day (active trading: 6.75 hours)
■ Contract size: $50 x E-mini S&P 500 futures price
■ Tick size: 0.25 index points=$12.50
■ Initial margin: $5,625
■ Average daily volume in 2010: 2,194,975 (for comparison: 

average daily volume of regular S&P 500 futures: 345,483)

15
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Sample series of E-mini’s
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Limit orders to sell

Limit orders to buy

Order-book dynamics

17
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Modeling coarse-grained price dynamics
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Null hypothesis: Random Walk (Bachelier, 1900).
Stylized facts of real price time series:
■ Absence of returns’ autocorrelations 
■ Aggregational Gaussianity
■ Fat tails of distributions
■ Long memory in volatility
■ Intermittency and Volatility clustering
■Multifractal scaling
■ Time reversal asymmetry and Leverage effect
■ Gain/Loss asymmetry
■ Asymmetry in time scales
■ Volume-Volatility correlation
■ Bubbles and crashes
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Modeling HF price dynamics

19

Null hypothesis: Poisson process.
Poisson process is a point process for which number 
of events in a given time interval T is independent from 
events outside the interval and described with Poisson 
distribution:

where λ=const is an intensity of the process.

Poisson process is characterized by an exponential 
distribution of inter-event times τ.

Time
T

τ
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“Stylized facts” of real order arrivals
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• P. Ivanov, A. Yuen, B. Podobnik, Y. Lee (2004) “Common Scaling Patterns in Intertrade Times of U. S. Stocks.” 
Physical Review E 69 (5): 056107.

• M. Politi, E. Scalas (2008) “Fitting the Empirical Distribution of Intertrade Durations.” Physica A, 387 (8-9): 
2025–2034.

The DFA method consists of the following steps. We first
integrate the ITT series to construct the profile Y (k)
!! i!1

k (ITTi""ITT#) where "ITT# is the series mean. Next,
we partition the profile Y (k) into nonoverlapping segments
of length n $number of consecutive intertrade intervals% and
fit the local trend in each segment with a least-squares poly-
nomial fit. We then detrend the profile Y (k) by subtracting
the local polynomial trend in each segment of length n, and
we calculate the root mean square fluctuation F(n) for the
detrended profile. For order-l DFA $DFA-1 if l!1, DFA-2 if
l!2, etc.% a polynomial function of order l is applied for the
fitting of the local trend in each segment of the profile Y (k).
This procedure is repeated for different scales n. A power-
law relation F(n)&n' indicates the presence of scaling in
the ITT series. Thus the fluctuations in the ITT can be char-
acterized by scaling exponent ', a self-similarity parameter
that quantifies the fractal power-law correlation properties of

the signal. The scaling or correlation exponent ' is related
to the autocorrelation function exponent ( „C(n)&n"(

when 0#(#1… and to the power spectrum exponent )
„S( f )&1/f )… by '!1"(/2!$)$1%/2 *43,46+. A value of
'!0.5 indicates that there are no correlations and the signal
is uncorrelated $white noise%. If '#0.5 the signal is said to
be anticorrelated, meaning that large values are more likely
to be followed by small values. If '%0.5 the signal is corre-
lated and exhibits persistent behavior, meaning that large val-
ues are more likely to be followed by large values and small
values by small values. The higher the value of ', the stron-
ger the correlations in the signal.
Before performing the DFA analysis we preprocess the

data by excluding all outliers in the ITT series exceeding ten
times the standard deviation above zero. This naturally ex-
cludes large ITT values caused by unusual closures inside a
trading day, as well as data entry errors. This procedure re-

FIG. 3. $a% Root mean square fluctuation, F(n), for intertrade times $ITT% for companies Boeing $BA% and AT&T $T% obtained using
DFA-2 analysis. Here, n indicates the time scale in trade number. Both series exhibit long-range power-law correlations with a pronounced
crossover to larger exponent at scales above one trading day. The average daily number of trades for each company is marked by a dashed
line. As expected, the scaling properties of the ITT series remain unchanged after the Fourier-phase randomization, while the shuffled ITT
series is characterized by exponent '!0.5 as for uncorrelated $white% noise. Curves are vertically offset for clarity. F(n) for the ITT series
of $b% the first group of 15 companies and $c% the second 15 companies as ordered in Table I. Curves are vertically shifted with approximately
equal spacing and the crossovers are aligned by rescaling the time scale n by the total number of trades for each company in the period 4
January 1993–31 December 1996. All companies show a remarkably common scaling behavior. $d% F(n) for the time series of absolute
logarithmic price returns computed per minute for Boeing and AT&T. Here, n indicates the time scale in minutes. The vertical dashed line
marks a crossover at ,390 minutes—a typical trading day. Both companies exhibit scaling behavior similar to that observed for their
respective ITT series, with a greater degree of correlation over scales above one trading day.

IVANOV et al. PHYSICAL REVIEW E 69, 056107 $2004%

056107-4

M. Politi, E. Scalas / Physica A 387 (2008) 2025–2034 2031

Fig. 3. Shape parameters q (left) for the q-exponential and � (right) for the Weibull as a function of the intertrade average waiting time.

Fig. 4. Examples of fits with the Weibull, q-exponential and exponential distributions (Boeing and Exxon traded at NYSE, October 1999). An eye
inspection shows that the q-exponential fit seems to better replicate the tail behaviour. Fits have been performed with the first method. In the case
of the exponential distribution, only the first moment must be evaluated.

This is usually called bi-square weighting method with a cutoff equal to 6 ·Mad, where Mad is the median absolute
deviation of the residual

Mad = median(|yi � (i; p)|). (14)

• Adjust the coefficients, p, using the Levenberg–Marquardt algorithm [17].
• Iterate the process starting from the second step until the fit satisfies the convergence criterium |Lnew(pnew) �

Lold(pold)| < 10�6.

Once more, let us point out the difference between the two methods. In the first one, first- and second-moment
empirical estimates are used in order to fit two-parameter distributions. In the second method, the “best” parameter
values are found by minimizing a distance between the empirical survival functions and the theoretical curves.

The parameter values are reported in Table 5. Fig. 3 contains a plot of the form factors estimated for both the q-
exponential and the Weibull distributions. Finally, in Fig. 4, an example of the fit is given. Publishing values of fitted
parameters is not sufficient to assess the quality of fits. It is also necessary to run appropriate goodness-of-fit tests, as
we did above to exclude power-law tails. To this purpose, below, we discuss the results of two popular goodness-of-fit
tests: the Kolmogorov–Smirnov test and the �2 test.

4.4. Goodness-of-fit

The fits are analyzed using two different and classical goodness-of-fit tests: the Kolmogorov–Smirnov (KS)
test and the �2 test. KS considers the cumulative distribution function (in our case the survival probability is the

Clustering of order arrivals
Long memory in inter-trade intervals

Slower-than-exponential decay of the 
distribution of inter-trade intervals
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fixed-Dt log-returns. We do not show the corresponding results graphically, but the
widths of the f ðaÞ spectra are similar in both cases.

The multifractal character of price fluctuations can originate from the existence of
the long-range correlations in the price increments (via volatility) as well as from
their non-Gaussian distributions [33]. The possible influence of each of these factors
can be detected by a proper modification of the data. The long-range autocorrela-
tions can be completely erased by randomly reshuffling the original time series and
the non-Gaussianity of the distributions can be weakened by creating the phase-
randomized surrogates [37]. In the latter case we exploit the fact that the price
increments distributions are unstable in the sense of Lévy, which leads to their
convergence to a Gaussian under the discrete Fourier transforms. Fig. 5 shows three
examples of tðqÞ (left column) and f ðaÞ (right column) spectra for the original (solid),
reshuffled (dot-dashed) and phase-randomized (dashed) data. Both the widths of the
f ðaÞ spectra in each case are much smaller and the nonlinearity of tðqÞ’s is much
weaker for the modified signals than for the original ones. This behaviour of the
reshuffled signals confirms that the persistent autocorrelations play an important
role in multiscaling of the price increments. However, the spectra for the surrogates
are typically much narrower than for the reshuffled data which can be interpreted as
an evidence of the influence of extremely large non-Gaussian events on the fractal
properties of the signals. Keeping in mind the difficulties in precisely calculating the
scaling exponents hðqÞ for finite time series, one may interpret the narrow curves for
the modified signals in Fig. 5 as the manifestation of their relatively, but not
precisely, monofractal character.

To this end, we concentrated on multifractal properties of the time series of
logarithmic price increments. Our results go in parallel with earlier analyses of other
groups, which managed to show multifractality in the stock market data [8,12,14].
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Fig. 5. Comparison of the original and randomized price increments: original (solid), reshuffled (dashed)
and surrogate (dotted) time series. Multifractal spectra tðqÞ (left column) and singularity spectra f ðaÞ (right
column) are presented for three different stocks.
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• P. Oswiecimka, J. Kwapien, S. Drozdz (2005) “Multifractality in the Stock Market: Price Increments Versus Waiting 
Times.” Physica A, 347: 626–638.

• J.-P. Bouchaud, D. Farmer, F. Lillo (2008) “How Markets Slowly Digest Changes in Supply and Demand.” In 
Handbook of Financial Markets: Dynamics and Evolution (Handbooks in Finance), 57–160.

Multifractal scaling of inter-trade 
intervals

Long memory in the signs of orders
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Extended models:
■ Clustered point processes

Poisson process supplemented with artificial clusters around 
immigrants. 

■ Autoregressive Conditional Durations (ACD)
GARCH-type model for the inter-trade intervals:

■ Self-excited point processes:
■ Linear: Hawkes process
■ Nonlinear, e.g. Multifractal Stress Activation (MSA)

• R. Engle, J. Russell (1998) “Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction 
Data.” Econometrica: Journal of the Econometric Society, 66 (5): 1127–1162.

• A. Hawkes (1971) “Point Spectra of Some Mutually Exciting Point Processes.” Journal of the Royal Statistical 
Society. Series B (Methodological) 33 (3): 438–443.

• D. Sornette, G. Ouillon (2005) “Multifractal Scaling of Thermally Activated Rupture Processes.” PRL 94(3): 038501
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Self-excited Hawkes process

Self-excited Hawkes process is the point process whose intensity 
λt(t) is conditional on its history:

23
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Sample realization of the Hawkes process with µ=1.5, α=0.4, β=2 

Traditionally the exponential memory kernel is used:
Examples of triggering of secondary events
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Branching representation of the Hawkes process

Recall that sum of N independent Poisson processes with 
intensities λ1, λ2, ..., λN is a Poisson process with intensity 
λ=λ1+λ2+...+λN.

Thus self-excited Hawkes process

could be regarded as a sum of independent non-
homogeneous Poisson processes with intensities:

Each of them represent decaying intensity after a single 
shock and they altogether form a branching process.

24
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Branching processes
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Time
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Branching processes
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Time

Crucial parameter of the branching process is the “branching ratio” (n) 
- average number of “daughters” per one “mother”

For n < 1 system is subcritical (stationary evolution)
For n = 1 system is critical (tipping point)
For n > 1 system is supercritical (with p>0 will explode to infinity)

n = 0.88
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The branching ratio
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In other words, the branching ratio (n) is equal to the proportion 
of the average number of endogenously generated events 
among all events.

In the sub-critical regime (n < 1), in the case of a constant 
background intensity (µ(t)=µ=const) the rate of all endogenous events 
(“aftershocks”) is equal to:

The rate of exogenous events is equal to Rexo=µ.
Total rate of all events is:

Thus:
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Estimation of the branching ratio
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For the Hawkes process the branching ratio is given by expression:

In particular, for the exponential kernel:

The Maximum Likelihood estimator:

In particular, for the exponential kernel:
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Seasonality profiles

29

Average numbers of mid-price changes 
per day and average daily volume in 

1998-2010

Average number of mid-price changes in 
10 minutes interval during Regular 
Trading Hours in 2001 and 2009
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An important step of estimation procedure is quality-of-fit test.
For the Hawkes process it could be done with the residual analysis.

Residual process:

Eg. estimation within the period March 11, 2010 14:30-14:40:
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Estimation of reflexivity
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• V. Filimonov, D. Sornette (2012) “Quantifying reflexivity in financial markets: towards a prediction of flash 
crashes”, submitted to PRE, http://arxiv.org/abs/1201.3572
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Algorithmic and High-Frequency Trading
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The High Frequency Trading Community Is Now
Responsible For More Than 60% Of Average Daily Volume In
U.S. Equities.

Boston, MA, February 25, 2009 – A new report from Aite Group, LLC examines the
emergence of high frequency trading firms as a major force in institutional trading.
The report focuses on major trends impacting high frequency proprietary trading
firms, and the reasons these firms have become leading liquidity providers in all ex-
change-trade products.

High frequency trading firms have been flying under the radar until recently, prefer-
ring to take a back seat to the bulge bracket firms and hedge funds that have received
most of the attention. However, while the Goldmans and Morgans of the world were
building up their global empire, these firms were fine-tuning their trading models
and low-latency technology infrastructure. Today, the growing market clout of these
high frequency trading firms cannot be ignored. As a collective group, they represent
a significant force in trading and market structure. These firms will play a more pub-
lic role in global securities markets for many more years to come, whether they like it
or not. The high frequency trading community is now responsible for more than 60%
of average daily volume in U.S. equities.

"As tighter regulation sweeps through every corner of trading, regulators must be
careful to recognize the unique importance of the high frequency trading communi-
ty," says Sang Lee, managing partner with Aite Group and author of this report.
"With its growing market presence, any potential regulation designed to restore the

• “New World Order: the High Frequency Trading Community and Its Impact on Market Structure.” The Aite Group 
Report (2009) http://www.aitegroup.com/Reports/ReportDetail.aspx?recordItemID=531

• I. Aldridge (2010) “High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trading Systems.”
John Wiley & Sons.

High-frequency trading  

February 7, 2011 3 

HFT is not a strategy in itself 

electronic trading whose parameters are determined by strict 
adherence to a predetermined set of rules aimed at delivering 
specific execution outcomes. Algorithms typically determine the 
timing, price, quantity, and routing of orders, dynamically monitoring 
market conditions across different securities and trading venues, 
reducing market impact by optimally and sometimes randomly 
breaking large orders into smaller ones, and closely tracking 
benchmarks over the execution interval (Hendershott et al., 2010). 
High-frequency trading (HFT) is a subset of algorithmic trading 
where a large number of orders (which are usually fairly small in 
size) are sent into the market at high speed, with round-trip 
execution times measured in microseconds (Brogaard, 2010). 
Programs running on high-speed computers analyse massive 
amounts of market data, using sophisticated algorithms to exploit 
trading opportunities that may open up for milliseconds or seconds. 
Participants are constantly taking advantage of very small price 
imbalances; by doing that at a high rate of recurrence, they are able 
to generate sizeable profits. Typically, a high frequency trader would 
not hold a position open for more than a few seconds. Empirical 
evidence reveals that the average U.S. stock is held for 22 seconds. 

Strategies 
Over time, algorithms have continuously evolved: while initial first-
generation algorithms – fairly simple in their goals and logic – were 
pure trade execution algos, second-generation algorithms – strategy 
implementation algos – have become much more sophisticated and 
are typically used to produce own trading signals which are then 
executed by trade execution algos. Third-generation algorithms 
include intelligent logic that learns from market activity and adjusts 
the trading strategy of the order based on what the algorithm 
perceives is happening in the market. 
HFT is not a strategy per se but rather a technologically more 
advanced method of implementing particular trading strategies. The 
objective of HFT strategies is to seek to benefit from market liquidity 
imbalances or other short-term pricing inefficiencies.  
Liquidity-providing strategies mimic the traditional role of market 
makers – but unlike traditional market makers, electronic market 
makers (liquidity providers) have no formal market making 
obligation. These strategies involve making a two-sided market 
aiming at profiting by earning the bid-ask spread. They have been 
facilitated by maker-taker pricing models and have evolved into what 
is known as Passive Rebate Arbitrage. As much of the liquidity 
provided by high frequency traders (HFTs) represents  “opportunistic  
liquidity  provision”2, the entering and exiting of large positions is 
made very difficult. 
Pursuing statistical arbitrage strategies, traders seek to correlate 
prices between securities and to profit from imbalances in those 
correlations. Subtypes of arbitrage strategies range from arbitrage 
between cross-border or domestic marketplaces to arbitrage 
between the various forms of a tradable index (future or the basket 
of underlying stocks) and so-called cross-asset pairs trading, i.e. 
arbitrage between a derivative and its underlying. 
In terms of liquidity detection, traders intend to decipher whether 
there are large orders existing in a matching engine by sending out 
                                                      
2  During the Flash Crash, several major HFTs (who unlike traditional market makers 

are not under a fiduciary duty to be on the bid or offer even in adverse market 
situations) temporarily withdrew from the market in order to protect themselves. 
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Flash-crash event
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• “Findings Regarding the Market Events of May 6, 2010”: Report of the Staffs of the CFTC and SEC to the Joint 
Advisory Committee on Emerging Regulatory Issues (September 30, 2010).

• Source of picture: G. Bowley “Lone $4.1 Billion Sale Led to ‘Flash Crash’ in May”, New York Times (Oct. 2, 2010)
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Exogenous vs endogenous shocks in HF
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• V. Filimonov, D. Sornette (2012) “Quantifying reflexivity in financial markets: towards a prediction of flash 
crashes”, submitted to PRE, http://arxiv.org/abs/1201.3572
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Final remarks

■ In contrast to “neo-classical” theories, feedback mechanisms 
(reflexivity) play exceptionally important role in price 
dynamics. 

■ News plays a minor role in market volatility; most of price 
changes are result of internal feedback mechanisms. 
Due to the development of AT (and in particular HFT) 
endogeneity of price movements increased dramatically.

■ The estimation of the branching ratio provides a novel 
powerful metric of endogeneity, which is much richer than 
standard direct measures of activity such as volume and 
trading rates.

■ This measure allows real-time diagnostics of the market and 
distinguishing of exogenous (triggered by news) and 
endogenous (self-excited) events. 
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