Evidence of microstructure variables nonlinear dynamics from noised high-frequency data

Nikolay Andreev

National Research University Higher School of Economics, FERM Lab

## Possibilities of chaotic dynamics

• Usually we suppose that microstructure variables have stochastic nature.

 On the other hand many nonlinear deterministic systems are known to produce trajectories which have statistical properties of stochastic series.

## Possibilities of chaotic dynamics

• Simple example: autocorrelations for the tent map  $\int a^{-1}r = 0 \leq r \leq a$ 

$$x_{t} = \begin{cases} a & x_{t-1}, \ 0 \le x_{t-1} < a, \\ (1-a)^{-1}(1-x_{t-1}), \ a \le x_{t-1} \le 1. \end{cases}$$

are the same as that of some first-order autoregressive process;

• when a is close to 0,5 autocorrelations are close to 'white noise' (Sakai & Tokumaru, 1980).

## Possibilities of chaotic dynamics

- Can we consider that a financial series is a trajectory of some deterministic chaotic system?
- Advantages:
  - It is theoretically possible to forecast the exact future values for a short horizon;
  - During crisis the behavior of prices and other microstructure variables is chaotic rather than stochastic.

## Chaotic or Stochastic?

How can we distinguish between 'white chaos' and stochastic white noise by looking at the trajectory?

- There's no statistical test that has chaos as the null hypothesis
- Due to the presence of noise in microstructure data smoothing must be applied to the original signal (WaveShrink approach was used here).
  But: problems with forecastability.

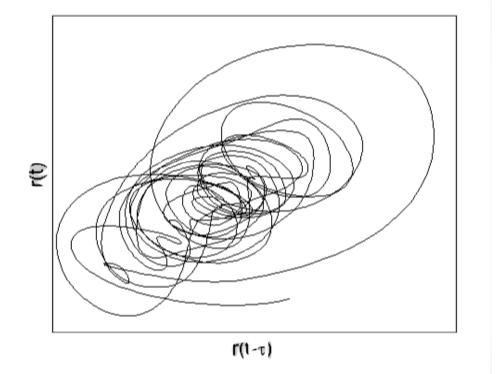
### Data Set High-frequency dynamics of several liquid MICEX shares was examined (10 sec time step) for 6 month period (01.2006-06.2006). Microstructure variables: •Price Return Absolute price change Price change Relative spread Spread

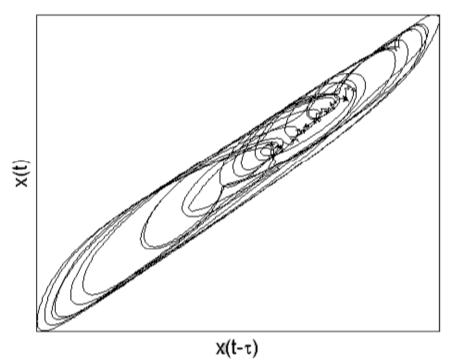
#### First evidence of deterministic structure

Let's find out if there's any non-random structure in smoothed microstructure series by looking at the dependence of lagged values:

Return r(t),  $\tau = 20$ 





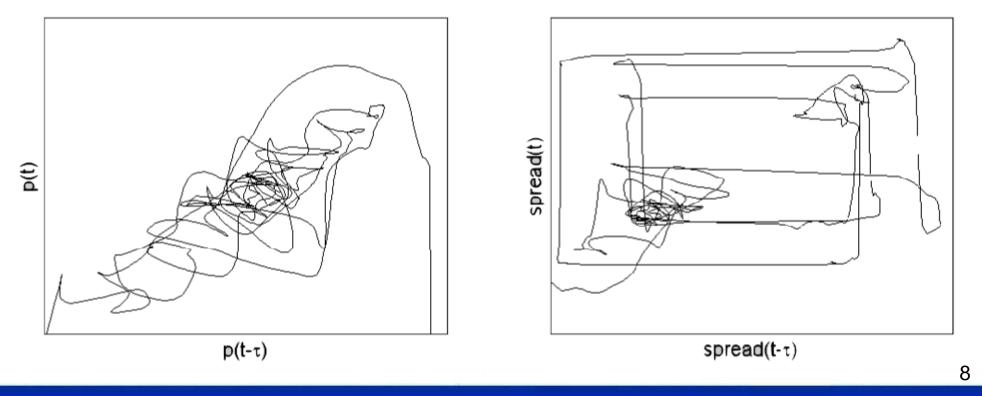


#### First evidence of deterministic structure

Unlike returns, price change and relative spread we can't see any reasonable pattern for price and spread movement:

Price p(t),  $\tau = 20$ 

Spread, 
$$\tau = 20$$



## **Correlation Dimension**

 Grassberger & Procaccia (1983) presented a characteristic property of a variety of stochastic processes:

Given  $x_1, x_2, ..., x_N$ , we construct  $y_k = (x_k, x_{k-p}, ..., x_{k-(M+1)p})^{M \times 1}$ 

Then correlation integral  $C_M(\varepsilon) = \frac{number \ of \ pairs \ (y_i, y_j): \|y_i - y_j\| < \varepsilon}{total \ number \ of \ pairs \ (y_i, y_j)}$ 

satisfies the following law for small  $\boldsymbol{\mathcal{E}}$  :

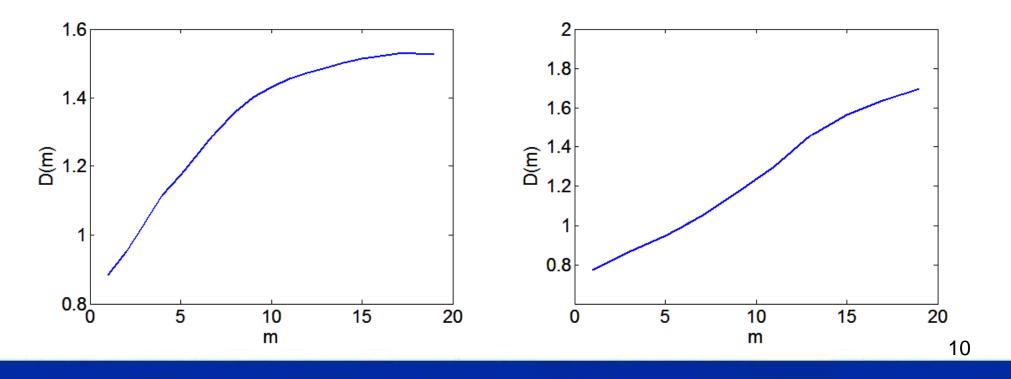
$$C_M(\varepsilon) \approx \varepsilon^{D_M}$$

## **Correlation Dimension**

**Criterion**: for many stochastic trajectories  $D_M \xrightarrow[M \to \infty]{} \infty$ If saturation is observed  $(D_M \xrightarrow[M \to \infty]{} D')$  then trajectory is very likely generated by a deterministic system. (2D'+1) - its dimension.

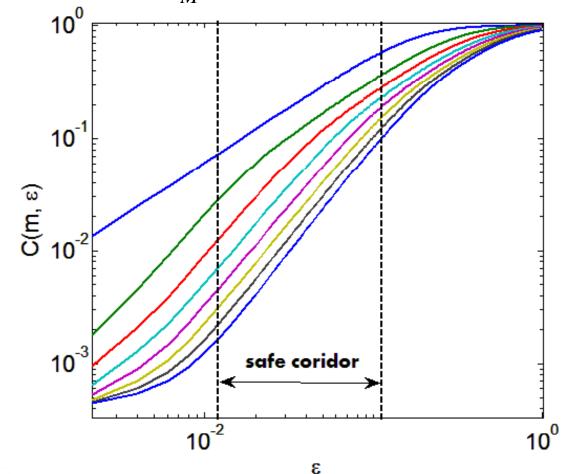
 $D_{M}$  for relative spread





## **Correlation Dimension**

The main problem is choosing the appropriate  $\mathcal{E}$  range to estimate  $D_{M}$ :



## **BDS Test for Nonlinearity**

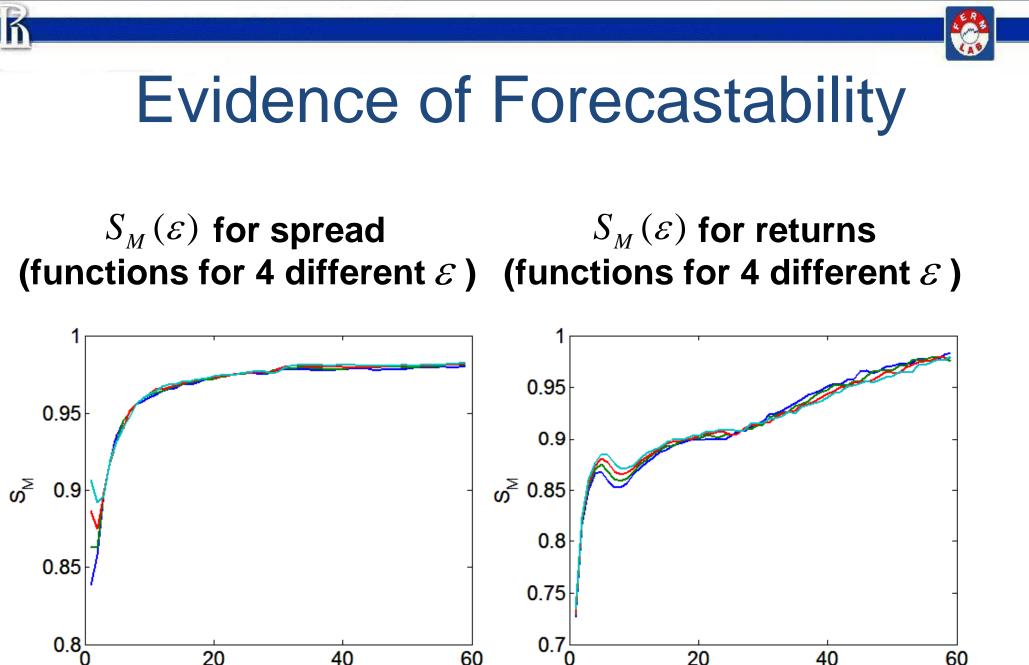
- Brock, Dechert & Scheinkman (1986) presented a statistical test for nonlinearity in data. Linear model is fitted to series, then BDS test is applied to residuals using a null of i.i.d.
- Noticed problems (Liu, Granger & Heller, 1992):
  - Rejection of null does not imply chaos but some (maybe stochastic) nonlinearity,
  - BDS power varies depending on linear model, it has less power for nonlinear MA models.

## **Evidence of Forecastability**

• Scheinkman & LeBaron (1989) prove that:

 $S_M(\varepsilon) = \frac{C_{M+1}(\varepsilon)}{C_M(\varepsilon)}$  is the conditional probability that two states of the system are close given that their past *M* histories are close

- Implementation:
  - If states are independent then  $S_M(\varepsilon)$  does not depend on M;
  - If past values of the series help predict future values,  $S_M(\varepsilon)$  will tend to increase with *M*.



Μ

Μ

| Evidence of Predictability |  |  |  |  |  |
|----------------------------|--|--|--|--|--|
| $S_{M}(\varepsilon)$       |  |  |  |  |  |
| increases                  |  |  |  |  |  |
| increases                  |  |  |  |  |  |
| converges to 0,9           |  |  |  |  |  |
| converges to 0,96          |  |  |  |  |  |
| increases                  |  |  |  |  |  |
| increases                  |  |  |  |  |  |
|                            |  |  |  |  |  |

### **Recurrence Plots**

• For the past decade new developments for recurrence plots were achieved.

• Recurrence plot indicates if different states of the dynamic system are close or not:

$$R_{\varepsilon}(i,j) = \begin{cases} 1, & \text{if } ||x_i - x_j|| < \varepsilon, \\ 0, & \text{otherwise.} \end{cases}$$

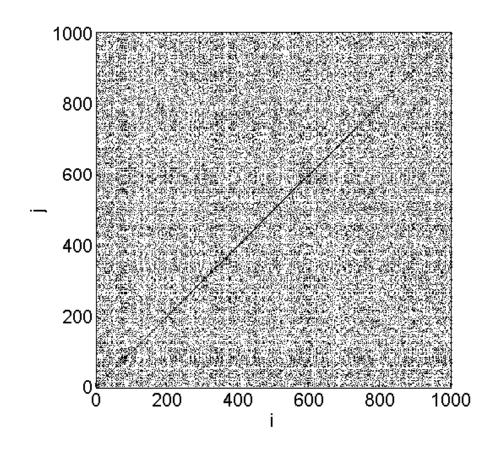
## Recurrence Plots: Advantages

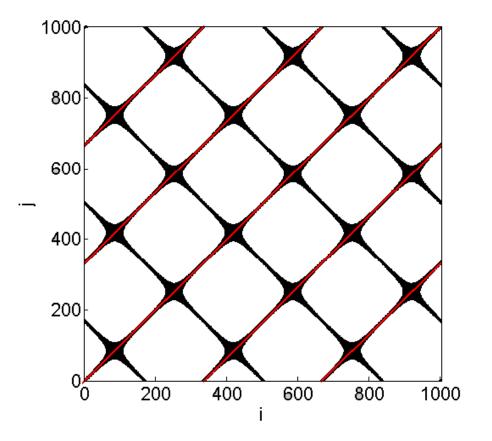
- RP allows simple and reasonable visualization of n-dimensional dynamics.
- Thiel et al (2004) developed RP-based approach to estimating correlation dimension and other dynamic invariants without choosing embedding parameters (*p*,*M*)
- Presence of nonlinear structure in data can be noticed even without quantification.

## Recurrence Plot: white noise vs predictable system

Recurrence plot for i.i.d. x(t)

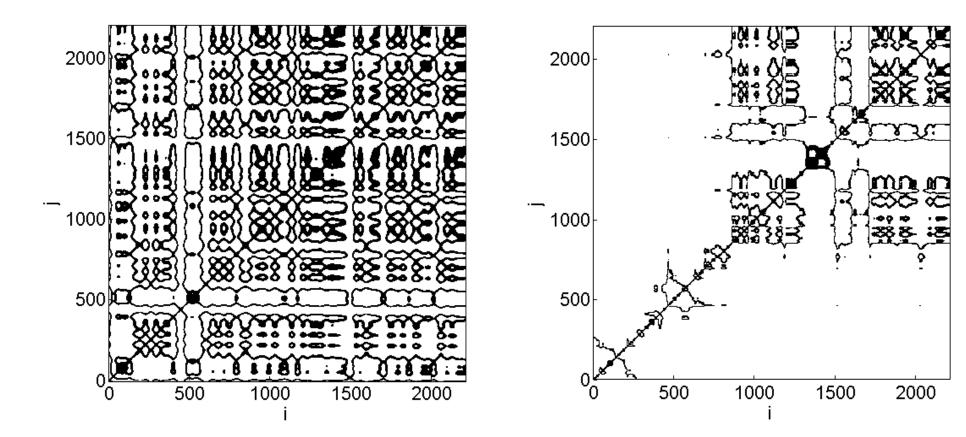
Recurrence plot for  $x(t) = \sin(6\pi t)$ 





### **Recurrence Plot:** real systems





## **Recurrence Quantification Analysis**

- Total amount of diagonal lines in RP reflects the predictability and determinism of the trajectory.
- Real data have quite complicated RPs, so several numeric measures of determinism were proposed (quantification analysis).

Let P(L) be the probability to find a diagonal line of length L in the RP.

### **Recurrence Quantification Analysis**

| Name                       | Definition                                                                                | Interpretation                                                            |
|----------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Recurrence rate (RR)       | Percentage of black points in RP                                                          | Correlation integral                                                      |
| Determinism ( <i>DET</i> ) | Percentage of black points which are part of diagonal lines of at least length <i>L</i> . | Measures<br>predictability                                                |
| Entropy (ENTR)             | Shannon entropy of the distribution of diagonal lines <i>P(L)</i>                         | Quantifies the<br>complexity of the<br>deterministic structure            |
| Laminarity (LAM)           | Same as DET but for vertical lines                                                        | Quantifies the<br>occurrence of laminar<br>states                         |
| Trapping Time (TT)         | Mean length of vertical lines                                                             | Measures the mean<br>time that the system<br>sticks to a certain<br>state |



#### Results of RQA for microstructure series

|                       | RR    | DET   | ENTR | LAM    | π  |
|-----------------------|-------|-------|------|--------|----|
| Return                | 6,23% | 0,91% | 0,19 | 56%    | 16 |
| Relative Spread       | 6,43% | 0,51% | 0,23 | 73,92% | 18 |
| Spread                | 8,19% | 0,03% | 0,68 | 78,38% | 21 |
| Price                 | 6,95% | 3,7%  | 0,28 | 78,02% | 21 |
| Price Change          | 5,91% | 0,17% | 0,32 | 58,92% | 16 |
| Absolute Price Change | 7,91% | 0,39% | 0,26 | 69,81% | 17 |

## What are the results?

 Returns, price changes, relative spread show signs of complex nonlinear underlying structure, thus random walk model isn't appropriate for them.
Scheinkman-LeBaron procedure shows that history of

these variables helps to predict future values.

- **Price** and **spread** dynamics show purely stochastic behavior or the amount of noise is too great. Future values do not depend on history.
- RQA shows the presence of determinism in returns, relative spread and absolute price change dynamics, but no determinism for spread.

## References

- Grassberger, P., and Procaccia, I. 1983a. Characterization of strange attractors. Physics Review Letters 50 (January): 316.
- Brock, W. A.; Dechert, W. D.; and Scheinkman, J. 1986. A test for independence based on the correlation dimension. Manuscript. Madison: University of Wisconsin-Madison; and Chicago: University of Chicago.
- Scheinkman, J.A.; LeBaron, B. 1989. Nonlinear Dynamics and Stock Returns. The Journal of Business, Vol. 62, No. 3 (Jul., 1989), pp. 311-337.
- Sakai, H.; Tokumaru, H. 1980. Autocorrelations of a certain chaos. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-28(5), pp. 588-590.

## References

- Liu, T., Granger; C.W.J., Heller; W.P. 1992. Using the Correlation Exponent to Decide Whether an Economic Series is Chaotic. Journal of Applied Econometrics, Vol. 7, Supplement: Special Issue on Nonlinear Dynamics and Econometrics (Dec., 1992), pp. S25-S39.
- Thiel, M.: Romano, M.C.; Read, P.L.; Kurths, J. 2004. Estimation of dynamical invariants without embedding by recurrence plots. Chaos 14 (2), pp. 234-243.

# Questions?