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Basics of Reduced-Form Credit Risk Modeling

• Modeling of an unpredictable time of default.

• The key element is the default intensity (hazard
rate), which is the conditional default probability
density.

• Model is to be calibrated to the market price data.
Corporate fundamentals are NOT explicitly taken into
account.

• Applied to pricing credit risk sensitive instruments.

2



Pros & Cons of Default Intensity Models

Pros:

 Relative tractability.

 Require little data.

 Allow modeling 
interest rate and credit 
risk in a joint 
framework.

Cons:

 Treat default as an 
absolutely 
unpredictable event.

 Results are highly 
dependent on  the 
chosen specification of  
the default intensity.
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Interest Rate and Credit Risk Analogies

Discount Function d(t,s)

1. d(t,s1)>d(t,s2) if s1<s2

2. d(t,s)>0

3. d(t,0)=1

4. d(t,s)→0 with s→∞ 

• Instantaneous Forward 
Rate Function

 Nonnegative 

Survival Probability Function 
P(t,s)

1. P(t,s1)>=P(t,s2) if s1<s2

2. P(t,s)>0

3. P(t,0)=1 

4. P(t,s)→0 with s→∞ (no 
one lives forever)

• Default Intensity Function

 Nonnegative
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Default Intensity Specifications 
(Deterministic)

• The simplest example is a time homogeneous 
default model.

• Default intensity is a positive constant λt

• Survival probability:

where t – current date, s – term.

• In the moment t market participants forecast 
credit quality to remain the same over the time.
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Default Intensity Specifications 
(Deterministic)

• The next example is a time inhomogeneous default 
model

• Default intensity term structure is deterministic, but 
non-constant (polynomial, exponential, etc.)

• Survival probability:

• The form of             depends on current perceptions 
of market participant about future credit quality of 
the obligor.
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Default Intensity vs Probability Function
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Default Intensity vs Probability Density
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Implementation of Models with 
Deterministic Specification

• The trivial use of deterministic specification of
default intensity is the extraction of risk-
neutral hazard rate function via bootstrapping
bond or CDS data. Assumed form of hazard

rate curve is piecewise constant.

• Bootstrapping methodology is discussed
further below.
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Default Intensity Specifications 
(Stochastic)

• Default intensity is assumed to be a stochastic
process.

• The market is assumed to be arbitrage-free and
complete, therefore a unique risk-neutral probability
measure exists, under which default-sensitive assets
are priced.

• Risk-neutral survival probability:

• What process should be chosen?
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Parametric Default Intensity 
Specifications

• The widest class of parametric specifications 
of default intensity is affine model class.

• Affine models are rather tractable and have 
quite simple analytical expressions.

• Examples:
 Vasicek

 Cox-Ingersoll-Ross

 Hull-White
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Parametric Default Intensity 
Specifications (continuation)

Vasicek (1977) :

• Hazard rate follows a mean-reverting Brownian
motion process.

• The mean reversion level is constant, thus credit
quality does not change in long run.

• Hazard rate volatility is constant as well and
independent of hazard rate level.

• The model admits negative hazard rate levels.
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Parametric Default Intensity 
Specifications (continuation)

Cox-Ingersoll-Ross (1985):

• Hazard rate volatility is proportional to the 
square root of current hazard rate level. 

• Avoids negative hazard rates.

• Still tractable.
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Parametric Default Intensity 
Specifications (continuation)

Hull-White (1990):

• Similar to Vasicek, but the mean reversion 
level is a function of time.

• Model can fit any forward curve, but it is 
not internally consistent and requires 
recalibration on a daily basis.
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The Heath-Jarrow-Morton 
framework (1992)

• The entire forward curve depends on a 
single (or several) stochastic shock, but 
each instantaneous forward rate has its 
own sensitivity to this shock.

• An HJM framework may be advanced to 
an infinite-dimensional extension, which is 
equivalent to a non-parametric 
specification.



Problems of Joint Estimation of Interest Rate 
and Credit Risk

1. What specification should be used for interest rates 
and what for hazard rate?

2. How do interest rates and hazard rates interact?

3. For instruments of a single type (bonds) interest rate 
and credit premium can NOT be separated in a 
reduced-form model. In order to separate them we 
have to use several instruments, for example bonds 
and CDS.

4. Liquidity has a significant impact on bonds prices, 
therefore ignoring liquidity factor causes errors in 
interest rates and default probabilities estimates.
see Buhler-Trapp(2006,2008)
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Hazard Rate Term Structure Construction

• Use the obtained zero-coupon yield curve to bootstrap default 
intensities.

• General methodology of bootstrapping hazard rate from CDS 
data:

1. Get CDS spreads (or up-fronts) on particular entity for all available tenors 
and get default-free zero-coupon yield curve;

2. Calculate implied hazard rate for the shortest tenor assuming it being 
constant until CDS maturity;

3. Moving to the next longer tenor, find its implied hazard rates for terms 
between its term to maturity and the term to maturity of previous CDS, 
assuming hazard rate for shorter terms being obtained on the previous 
step;

4. Recursively calculate entire term structure of hazard rate moving to longer 
tenors
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Problems with Bootstrapping for Hazard 
Rate

• CDS premiums are paid on standard dates, thus payment
dates for all CDS contracts are perfectly matched, but there
are few tenors for particular entity, so in general CDS data is
insufficient to get satisfactory hazard rate term structure
using bootstrapping.

• Assuming piecewise constant form of hazard rate term
structure we artificially increase volatility of hazard rates in
nodes.

• For CDS written on debt of distressed entities (downward
sloping CDS spread curve) bootstrapping may yield negative
hazard rates.

• We illustrate this fact with hazard rate structures
bootstrapped from CDS on Greece.



Problems with Bootstrapping
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Cox-Ingersoll-Ross Equations for Hazard 
Rate

• We assume that the risk-free discount function 
d(t) is known.

• We assume the following SDE for the spot default 
intensity process (risk-neutral):

• The survival probabilities to time t are known to 
equal

were A(t) and B(t) have simple analytical expressions.
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CDS Pricing Formula

• CDS are priced in terms of par spread:

• where R is the CDS par spread, d(t) is the discount function,             
is the year fraction between t₁ and t₂, and
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How to Get Default-Free Zero-Coupon 
Yield Curve

• Use one from a “trusted source” such as Bloomberg or 
Reuters. 

• Obtain one from market data using one of the following 
snapshot methods:

1. Bootstrapping – too rough and sensitive to errors in data ;

2. Parametric (Nelson-Siegel (1987), Svenson (1994)) – produce curves with 
limited forms spectrum;

3. Splines (Smirnov, Zakharov (2003)) – sensitive to errors in data (filtering is 
needed).

• Constructed curve is highly dependent on used data 

(government bonds and interest swaps).



CDS Pricing Assumptions

• LGD is deterministic and constant.

• Liquidity is ignored.

• Often interest rates and default probabilities 
are assumed to be independent.

• Counterparty risk is NOT taken into account 
(introduction of CCP).

• In case of credit event CDS is settled at the 
moment when credit event occurs.
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The Fitting Procedure

• We calibrate 4 parameters:  μ, κ, ν, λ₀ to the 
observed data via the CDS pricing equation (par 
spread concept):

where R is the CDS par spread, d(t) is the discount 
function,              is the year fraction between t₁ and 
t₂, and
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Joint Framework for zero-coupon and 
hazard rate term structure

• Use a unified model for joint (possibly correlated) 
dynamics of spot interest rate and spot default 
intensity, i.e. CIR-like model.

• Snapshot fitting possibilities of simple dynamic 
models are very limited.

• Systematic errors are introduced from using an 
inappropriate model for fitting, resulting in 
misestimating the default probability.
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Joint Framework for zero-coupon and 
hazard rate term structure (cont.)

• Joint stochastic dynamics (see Brigo, Mercurio (2006)):

• If           then CDS pricing is complicated due to the 
correlation term: 

• If            then this is just a double CIR model.
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Problems with CIR model

Let instantaneous interest rate dynamics be 
described by the CIR model

ttt dWdtrkdr   )(

• Snapshot  fitting for Eurozone government 
bonds yields visibly good results.

• Snapshot fitting for CDS prices yields excellent 
results.
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The Proposed Method

• A new infinite-dimensional dynamic model yielding 
as a by-product a decent snapshot fitting method 
both for interest rates and default intensities.

• The implied snapshot fitting method is
non-parametric, which allows to eliminate model-
inflicted errors.

• The method is not ad hoc, it is based on a sensible 
and sufficiently rich stochastic dynamics model.



29

HJM Equations

• Infinite-dimensional dynamics à-la Filipovid
(within Heath-Jarrow-Morton framework).

• In Musiela parametrization: 

• No arbitrage condition:
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Double HJM Equations

• The joint uncorrelated model

gives a nonparametric approach to snapshot yield 
curve and default intensity fitting.

An infinite-dimensional extension to (Schönbucher, 
1998)
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The first step: specification of hazard 
rate 
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Collecting CDS, bond and default-
free rate data

Specification of 
default intensity 

and interest 
rateprocess

Deterministic Stochastic

à-la Filipovid 
with HJM 

frameworkCox-Ingersoll -Ross
Piecewise 
constant



Joint estimation of hazard rates and 
interest rate

• Find a risk-free spot forward rate curve f(t)
and issuer-specific spot hazard rates hi(t) such 
that:

– CDS quotes are fitted with weights proportional to 
relative liquidity.

– Risky bonds prices are fitted with weights 
proportional to bid-ask spreads.

– Fitted curves are sufficiently smooth.



Some formulae
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The second step: bond model prices 
calculation and accuracy test
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LGD assumption for 
bonds

Loss of market 
value

Loss of face 
value

Bond model prices calculation and risky yield curve 
construction   

Testing accuracy of default intensity process estimate

Comparison with 
bond market 

prices

Comparison with bond 
bid and ask quotes

“Feasibility 
band” approach



Dataset Description

• Eurozone sovereign bonds price data:
• Market price

• Bid & Ask

• Source: Bloomberg

• Eurozone sovereign CDS price data:
• Conventional spreads of par spreads

• Source: Reuters

• Issuers: Germany, France, Italy, Spain, Ireland, Greece, 
Portugal

• Time period: March 2010 – June 2011
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The two methods

CIR

• Simple and tractable.

• Used as a basis best-
practice stochastic models.

• Provides a limited, but 
reasonable  spectrum of 
shapes for yield curves and 
hazard rate curves.

• Difficult to upgrade to 
multifactor.

Non-parametric

• Complex.

• Used basically in theory.

• Any reasonable shape for 
yield and hazard rate 
curves.

• Easily incorporates 
multifactor (and even 
infinite-factor) dynamics.



Our Fitting Method

• As  a snapshot projection of our dynamic model 
one is required to search for a function f(t)=g(t)2

satisfying

where Pk is the price of the kth bond, Fi,k is the 
cash flow on the kth bond at time ti.
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Our Fitting Method

• The solution is an exponential-sinusoidal 
spline with knots at every cash flow time:
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Our Fitting Method

• Ensures positive spot forward rates.
• Ensures continuous and differentiable spot 

forward rates.
• Takes liquidity (e.g. bid-ask spreads) into account 

via weighing coefficients wk.
• Can be fine-tuned to exhibit any desired 

proportion between smoothness of the forward 
rate curve and accuracy of replicating bond 
prices.

• Does not introduce model-inflicted errors in 
estimation.
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The Feasibility Band

• In order to assess the accuracy of fitting, we 
employ the notion of a feasibility band.

• It transfers bid-ask bounds to the interest rate 
domain.
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Replication of bond quotes



CDS-Implied Yields



Spot hazard rates



Spot hazard rates: CIR



Risk-free zero-coupon yield



Risk-free zero-coupon yield: CIR



Risk-Free Yield

All Bonds

All CDS

Risk-Free  
Yield

Individual 
hazard rates



CDS-Implied vs Bond-Implied Yields

Risk-Free 
Yield

All CDS

CDS-implied 
risky yield

Individual 
hazard 
rates

Risk-
Free 
Yield

Bond-implied 
yield



Discussion

• While pricing less risky bonds adequately, CDS 
are overly pessimistic about distressed issuers.

• Or is the bond market overly optimistic? 

• Without CDS bid/ask quotes it works only one 
way.



CIR vs Non-Parametric

• The two approaches really yield the same 
snapshot results, especially for hazard rates.

• This may be because CIR is in fact used to 
price CDS (spot hazard rates are fit almost 
exactly, with usual relative errors of several 
b.p.)

• Still, non-parametric model offers dynamic 
advantages.



Multiple factors are the future

• In a recent observation van Deventer (Kamakura 
Co.) noted that the realized interest rate curves 
have been consistent with a single-factor interest 
rate model only on 25% of trading days since 
1962.

• Forward rate movements are consistent only on 
5% of trading days.

• http://www.kamakuraco.com/Blog/tabid/231/En
tryId/350/Pitfalls-in-Asset-and-Liability-
Management-One-Factor-Term-Structure-
Models-and-the-Libor-Swap-Curve.aspx
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